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Abstract 

This report is concerned with the incorporation of the axioms of quantum mea- 
surements into current communication estimation theory. It is well known that clas- 
sical electromagnetic theory does not adequately describe fields at optical frequencies. 
The advent of the laser  has made the use of optical car r ie rs  for information transmis- 
sion practical. Classical communication estimation theory emphasizes background 
noise and channel fading as  primary limitatiohs on system performance. At optical 
frequencies, quantum effects may totally dominate performance. Estimation theory is 
formulated using the quantum theory so that this type of system limitation can be under- 
stood, and optimal receivers and systems designed. 

The equations determining the optimal minimum mean-square-error estimator of 
a parameter imbedded in a quantum system are  derived. Bounds analogous to the 
CramcSr-Rao and Barankin bounds of classical estimation theory a re  also derived, and 
then specialized to the case of an electromagnetic field in a bounded region of space. 
Cramer -Rao-type bounds for estimation of parameters and waveforms imbedded in 
known and fading channels a re  derived. 

In examples optimal receivers for the commonly used classical modulation schemes, 
such as P P M ,  PAM, PM, DSBSC, are  derived. The differences between classical and 
quantum systems in implementation and performance a re  emphasized. 

It is apparent from the examples and from the structure of the bounds, that quantum 
effects often appear as an additive white noise arising in heterodyne and homodyne 
structure receivers. These receivers a re  not always optimal in performance or in 
implementation simplicity. Other receivers employing detection by photon counting are  
sometimes optimal or near optimal. 
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I. INTRODUCTION 

1.1 MOTIVATION FOR THIS RESEARCH 

Before the advent of the laser ,  optical communication was limited to the auspicious 
Now that coherent light sources a r e  avail- use of what engineers commonly call noise. 

able, interest in optical communication systems has developed. 
classical electromagnetic theory does not adequately describe many optical phenomena. 
In particular, the statistical outcomes of optical measurements can be understood only 
with the help of the quantum theory. 
parameters imbedded in electromagnetic fields. 
cal  frequencies is often limited by thermal noise and channel fading. At optical f re-  
quencies, quantum effects may completely dominate thermal noise in limiting 
performance. 
surements into classical communication estimation theory in ord.er to develop the tools 
necessary to analyze and design good quantum communication systems. 

It is well known that 

Engineers a re  often interested in estimation of 
The performance attainable at classi- 

It is the purpose of this work to  incorporate the axioms of quantum mea- 

I shall use the concept of a conditional density operator along with the axioms of 
quantum mechanics to answer the following questions. What performance can be attained 
at optical frequencies by using familiar modulation schemes on laser  carr iers?  Do quan- 
tum receivers look any different from their classical analogs? How much can be gained 
by optimal processing rather than heterodyning as a first stage to demodulation? Do 

systems that perform equally well at classical frequencies perform equally well at opti- 
cal  frequencies? 

1.2 CLASSICAL vs  QUANTUM FORMULATION 

I shall briefly discuss the two formulations here. A typical classical communica- 
tion system is shown in Fig. 1. A quantum system is shown in Fig. 2. The classical 
system comprises an analog data source that is modulated onto a carr ier .  The output 
of the transmitter travels over a channel. The channel distorts, attenuates, and adds 
random noise to the field. The receiver converts the field impinging upon its antenna 
into a waveform. We can represent a time-limited portion of this waveform by a sto- 
chastic Fourier ser ies .  
a r e  dependent upon the message back at the analog source. 
tionship (usually a conditional density) between the message and the received field data 
coefficients, we make our estimate of the message. 
tion scheme is specified in t e rms  of a mapping of all possible messages and estimates 
into the rea l  line. 

The coefficients of this expansion a r e  random variables that 
Using the probabilistic rela- 

The performance of our estima- 

In the quantum case,  the system up to the channel output is the same a s  the classi-  
The field at the receiver is specified quantum-mechanically, however, in 

The correspondence 
cal  system. 
t e rms  of the density operator conditioned upon the message. 

1 
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between the classical  and quantum systems is that the expectation of a measurement of 
the quantum E-field operator is the classical received field. We must specify the quan- 

tum measurements that the optimal receiver w i l l  make upon the received field. What 

constitutes a measurement, and the relationship between measurement outcome and 
message a r e  matters to  be treated. 

1 . 3  PREVIOUS WORK 

1 Much of the work of Car l  Helstrom on quantum estimation has been used as a foun- 
2 dation for this work. 

have also been used extensively. 
I am trying to extend is a basic tool. Much of my work follows the results of Van Trees.  

4 5 The work of Messiah and Louise11 wi l l  be called upon in the discussions on quantum 
measurements and fields. For  a treatment of quantum detection theory, I refer the 

6 reader to the work of Jane W. S. Liu. 

The results of Glauber on the representation of quantum fields 
Of course, the classical communication theory that 

3 

1 . 4  SUMMARY 

The optimal quantum estimator of a random variable coupled to a quantum field will  
be derived. 
parameters imbedded in quantum fields will  also be derived. 
nonfading channels at optical frequencies will  be made. 
derived for  modulation schemes, such as PAM,  PM, PPM, DSB. 

Bounds similar to the classical Cramer-Rao bounds for the estimation of 
Applications to fading and 

Optimal receivers wi l l  be 

From the results of this work, we can make some statements about optimal receivers 
and performance. 
munication system in which an efficient o r  asymptotically efficient receiver, incorpo- 
rating homodyning a s  a first step in demodulation, for a known-phase nonfading channel, 
exists, a quantum receiver incorporating homodyning as a first stage will  also be effi- 
cient or  asymptotically efficient. Examples include DSBSC and P P M .  This does not 
mean however, that a simpler receiver, 
does not occur, cannot exist. 

From the Cram&--Rao bounds it is clear that in any classical com- 

o r  one that performs better when efficiency 

From the section on applications, which includes a large number of examples of 

commonly used classical modulation schemes, i t  is apparent that efficient receivers 
do exist for strong signals. 
a local oscillator, w a s  always employed in the first stage of demodulation. 

Fo r  the examples studied, photon counting, perhaps with 

3 



11. FORMULATION 

2.1 TUTORIAL MATERIAL 

Some material that is necessary for understanding the results of this research wi l l  

now be presented. 
the references and wants to get the gist of the results. 
cepts of communication estimation and quantum theory a re  not usually well understood 
simultaneously by every given person. Experience with reading the preliminary drafts 
indicates that a tutorial section is justified. 

This is meant as an aid to the reader who does not wish to consult 
The author feels that the con- 

2. 1. 1 Estimation Theory 

Classically, we a re  often presented with the following estimation problem. A source 
produces a message n/r which is a set  of numbers called the message. As a result of 
this message, a receiver obtains a sequence of numbers X called the data. There is 
a probabilistic relationship between the data and the message, usually expressed as a 
conditional density p(X/M). - -  
mate of the message. 
ensembles to the rea l  line. The receiver must pick his estimate to minimize the aver- 
age cost. If we 
denote our estimate s(z), the average cost that we shall use here is E[(M(X)-M) 1, 
which is known as the mean-squared e r ro r .  
ensemble average. We shall now develop some classical results that wi l l  soon be 
extended to the quantum case. 

The receiver must generate, based upon the data, an esti- 
There is a specified cost functional relating the message and data 

We assume here that the a priori message density p ( g )  is known. 
2 

The symbol E[ ] denotes expectation o r  

A A 

A 
Suppose Nlopt(X) is the optimal estimator for the mean-square-error cost functional. 

We then have 

It is a simple application of the calculus of variations to show that 

That is ,  the optimal estimate, given 3, is the conditional mean of the message, given 
X. There a r e  
several  bounds to the cost associated with any estimator. 
estimators that come close enough to these bounds to call these estimators quasi-optimal. 

The conditional mean of the message is in general difficult to calculate. 
Classically, we can often find 

4 



We shall now derive the Cramer-Rao bound. 

B(M) is the average difference between the estimate and the message, given that the 
message has realized value n/r. 
-- 

Require 

We then have 

where b. is the jth component of B, and m .  is the jth component of E. 
sides of (5) on - M using (4). 

Integrate both 
J - 3 

0 = s [G.(X)-m.] p(X, M)  d/dmi[lnp(X, -- M)] dXdM - -  - 6( i ,  j ) .  (6) J J - -  

Define 

Li = d/dmi[ln P(X, - -  M)]. 

Form the vector Z 

Z =  - L2 

Lk 

(7) 

Form the matrix G 

The reader can convince himself that - G is semipositive definite, since the expectation 

5 



of the square of a quantity is non-negative. 
Expanding the determinant along the left column, we obtain 

Thus Det 2 is greater than o r  equal to zero. 

where H1 
general bound 

is the (1, 1) element of the inverse of matrix H. Similarly, we obtain the 

ii 
3 H 

H . .  = E[L.L.]. 
1J 1 J  

The usefulness of this bound will  become apparent as we progress. 

2. 1. 2 Axioms of Quantum Mechanics 

Quantum mechanics, in its formalism, concerns itself with the state x )  of an 
It is concerned, too, with operations performed upon the system 

If we  make a correspondence between a physical 
abstract system. 
which yield real-number outcomes. 
system and a quantum system, then we can use the axioms of quantum mechanics to pre- 
dict the outcomes of measurements performed upon the physical system in terms of 
operations performed upon the quantum system which correspond to those measure- 
ments. 
with the following properties. 

The quantum state x )  lies in a Hilbert space. A Hilbert space is a linear space 

1. Properties of Linear Space 

If x) ,  y)  and z)  are  elements of the space and a, b, c a re  real  or complex num- 
bers, then 

A. There is an operation called addition (+) 

a. 
b. 

There is a unique element 0 of the space 

x) t y) = y) t x)  
x) + (y) + 2)) = (x) + y)) f 2) 

B. 
x)  + 0 = x)  

x)  t -x) = 0 

C. For every x)  there is a unique -x) such that 

D. c(x) + y)) = cx) + cy) (c+d)x) = cx) + d x )  

cdx) = c(dx)) lx )  = x)  

2. 

A. 

B. 

Properties of an Inner Product Space 

X is a linear space 

There exists an operation on pairs of elements denoted (x,  y) called the inner 
product 

6 



a. (x,x>'/ '  2, 0; equality implies x> = o 

(x ty ,  xty)  'I' d (x ,  x)'/' t ( y, y) I/'. , b. 
where xty)  = x)  t y)  

* 
c. ( x , y ) ' =  ( Y , X )  

d. ( c x t y , z )  = c ( x , z )  t ( y , z )  

3 .  

A. 

B. 

Properties of a Complete Inner Product Space 

X is an inner product space 

If a sequence in X converges in the Cauchy sense in norm (x ,  x)'/' then a 

limit in X for that sequence exists. 

A complete inner product space is a Hilbert space. 

It is possible to formulate the quantum system such that the states a re  time-invariant. 
Since most elementary texts formulate quantum mechanics first in the Schrodinger pic- 
ture,  in which the state varies in time, we shall start this way. For any given system 
there is an operator (which maps elements of the space into elements of the space) called 
the Hamiltonian. 

As we have mentioned, our quantum state x(t)) will  be an element of a Hilbert space. 

In the Schrodinger picture, the time evolution of the system state is 

iTid/dt x(t)) = Hx(t)) (Schrodinger wave equation), (13)  

where Ti is Planck's constant /ZIT. 

Suppose that we define the transition operator by 

fid/dt e(t ,  to) = HB(t, to) 

Define the transformation 

where t is an arbitrary initial time. In this representation, called the Heisenberg pic- 
ture, the state is time-invariant. 
this report. 

0 

This is the representation that we shall use throughout 
We shall therefore omit the subscript H hereafter. 

We are  now ready to discuss measurements. A Hermitian operator is defined by the 
condition 

( X M Y )  = ( Y W *  for all x )  and y). 

A Hermitian operator may.be expanded in one of the following forms 

M = Z ei ei) (ei o r  M = I m(e) e )  (e de, 

7 



where 

( e . e . )  = 6( i ,  j) ( e f )  = 6(e,f) 
1 J  

(Kronecker delta) (Dirac delta) 
(the ei o r  m(e) are  real) 

4 It is possible to interpret the rigkh-hand case as a limiting case of the left-hand case. 
We shall prove some of our theorems in the discrete case, but will  apply the results to 
the continuous case. 

One way of expressing the axioms of measurement is as follows. 
surement there corresponds a Hermitian operator called an observable. If we make a 

measurement corresponding to an observable M, the outcome of the measurement will  
be one of the eigenvalues of the operator. 
given the state is x), under the assumption that the ei a r e  distinct, is 

To every mea- 

The probability of outcome ei [see (1 6b)], 

Furthermore, after the measurement, if  the outcome is ei, the state will  be ei). 
Therefore, assuming that the e.  a r e  distinct, we know the state after the measurement. 
No more information about the state before measurement is available through further 
measurements. 

1 

It is certainly possible that the state of the system before measurement is not known 
exactly. We may only have a probabilistic knowledge of the a priori state. This is 
expressed by a Hermitian operator called the density operator. It has the following 
eigenstate expansion 

P = I= Pi P i )  (Pi, 

pi 1, 0;  z pi = 1. 

where 

The probability of outcome ei of 
marized in p is 

Pr (ei/a priori knowledge) 

a measurement M, given the a priori knowledge sum- 

The average value of a measurement of M is 

(The notation E(f(X)) when X is an operator means the expectation of f (outcome of 

8 



measurement X).) The transform of the conditional density of the outcome of a mea- 
surement of M is 

E(eisM) = TR p e i s M  . 

2. 1 . 3  Concept of a Quantum Estimator 

We now know that measurements performed upon a quantum system a re  probabilis- 
tically determined in te rms  of the conditional density of the outcome, given the measure- 
ment, 
to determine what measurements to make, and how to transform these measurements 
into an estimate. 
message takes on a particular value IVI, then the density operator of the quantum 

M space is given by p-. 

the measurement outcome, given that the message has assumed value n/r (in trans- 
form) is 

Our measurement outcomes will  be used to estimate a message. Our problem is 

Let us introduce the concept of a conditional density operator. If the 

If we specify a measurement L, the conditional density of 

M i sL E(eiSL/g) = TR p-e . 

Our estimation performance, given a cost functional, depends upon the choice of L, 
a s  well as  the processing of the result. If we write L, its expansion is 

L = c li li) ( li. ( 2 2 )  

Our estimate consists in measuring L and transforming the outcome according to 
A 
m(li). We can write the measurement plus transformation as  

A 
M = C &(li) li) ( li. (23) 

Thus our estimator itself is a Hermitian operator. 

The description above is of single -parameter estimation. 

The significance of the inter- 
mediate operator L may be that it is what we physically measure and then transform. 

For multiparameter esti- 
mation, we transform the outcome li into a vector of estimates for the vector message. 

2 . 2  PARAMETER ESTIMATION 

2. 2. 1 Optimal Single-Parameter Estimator 

Suppose we are given the following problem. A single random parameter, A, is to 
be estimated, 
sity operator pa described above. We wish to find the optimal estimator Aopt, which is 
a Hermitian operator defined upon the space of pa. 

stances such an estimator exists, and is unique. 
measured on a product space given by the space of pa and another space independent 

We are  given its a priori density p(a). We a re  given the conditional den- 
n 

We wish to show under what circum- 
We shall also show that an operator 

9 



of A, at the choice of the measurer,  cannot do better than the best estimator on the 
a space of p . 

estimate. 

Our cost functional is the average squared e r r o r  between message and 

From the tutorial material, we know that the expectation of the square e r ro r ,  given 
the message for any operator, is 

(24) a A  2 E ( i - a ) 2  = TR p (A-aI) . 
Thus our cost functional is 

A 
C(A) = 1 p(a) TR pa(k-aI)2 da. 

Define the operators 

J? = p(a) pa da 

q = J ap(a) pa da. 

It follows that 

c(A) = E ( A ~ )  t TR ( r A 2 - 2 i q ) .  

Let D be any Hermitian operator and a any rea l  number. 

This implies 

A 
TR (rAoptDt& rD-2qD) = 0 for all Hermitian D. 

opt 

Lemma 

If is positive definite, the optimal estimator must satisfy 

A A 
rAopt t Aoptr = 2q. 

Furthermore, the optimal operator is uniquely given by 

Proof: Suppose we call 

rA t A  r - z q = K .  opt opt 

K is clearly Hermitian. From (29a) we have the necessary condition 

TR KD = 0 for all Hermitian D. 

Expand K in its diagonal form 

10 



K = C ki ki) (ki, 

We can set  

D = k. )  (k . .  
J J  

(33) 

(34) 

We obtain k. = 0 for all j .  

Suppose there a re  two solutions to (29). 
We must have 

Thus K is the zero operator and (2%) holds. 
J A A  

Call the difference A1 - A2 = G. 

r G  t GI' = 0. (35)  

Expand G in diagonal form 

G = gi gi) (gi. 

By (35) we have 

Since I' is positive definite, gi = 0 for all i. 

Let R be the solution that we postulate. 

Thus G is zero, and the two solutions 
a re  really the same. 

Multiply both sides of (38) by r and integrate by parts 

00 .-ar -ra -ra -ra r R =  -2e q e l o  - 2 J r  e q e d u r  

= 2q - R r .  (3 9) 

Thus R is indeed the unique solution of (29). 
The mean-squared e r r o r  associated with the estimate is 

We are  restricted to making Hermitian measurements. We can, however, make a 
Hermitian measurement on a product space Ql X Q2, where the density operator of Ql 

a 
is p and the density operator of Q2 is p2, independent of A and specified by the mea- 
surer .  

Proceeding a s  before, we obtain 

1 1  



where r0 and qo are  the quantities defined in (26) on the space R1. 

The solution is clearly the original solution to (29b) which commutes with the density 
operator p2. 

product space. 
Thus the optimal operator and performance are  unchanged by going to a 

The preceding derivation w a s  of the optimal single -parameter estimator. For the 
multiparameter case, there is a certain difficulty involved. 
do classically, for the individual optimal estimators, we may find that they do not com- 
mute. That is, 

If we solve, as we would 

(43) 

A A 
where A and B are  the individual optimal estimators of two parameters A and B. 

opt opt 
Thus we cannot simultaneously make the individual optimal estimates. We must 

make some compromise set  of commuting estimates. We can set  the problem up by 
using a Lagrange multiplier constraint technique with the original individual cost func- 
tionals. 

A A  h A A A  A A  
C(A, B) = C(A) t C(B) t i[TRA(AB-BA)], (44) 

where A is Hermitian and summarizes the constraints of commutation. 
The optimal estimators that commute must satisfy 

A A A A 

rAopt t A r - 2qA t i (B A-ABopt) = 0 
opt opt 

opt opt opt 
A A A 

t B r - 2qB - i (A A-AAopt) = 0 

A A  A A  

AoptBopt = BoptAopt’ 

where 

- I ap(a, b) pa’ dadb 

= bp(a, b) pay dadb. 

qA - 

‘IB 

(45) 

Unfortunately, we cannot say what space to measure on. That is ,  for  multiparameter 
estimation, examples in which going to a product space helps exist. Even if  w e  knew 
what space to measure on, Eqs. 45 a re  difficult to solve. 

Special Cases and Examples 

Example 1. Suppose I’ and q commute. Let L be the solution of I’L = q. Clearly, L 
is Hermitian. Furthermore, by taking the adjoint of the previous equation, we obtain 

12 



L r  = q. 
out operators in their eigenvector expansions, we obtain 

Thus L is a solution of (29) and is the optimal estimator for this case. Writing 

where 

a opt j = S / Y j .  

Such a situation could ar ise  if  the density operator were diagonal in the same repre-  
sentation for all values of the parameter A. That is, 

(Note that the eigenvectors do not depend upon a.) 

From (26) we obtain 

This is analogous to the conditional mean of classicql estimation theory. That is, given 
that the eigenvalue associated with eigenvector k occurs, we estimate A to be the con- 
ditional mean of A, given k. 

For instance, suppose we have a cavity that is lossless and has one mode of electro- 
magnetic oscillation. 
parameter to be estimated in the following way. 
Appendix B), we have 

Suppose the density operator of the mode is coupled to the 
2 Using the notation of Glauber (see 

t n)  is an eigenstate of the number operator b b 

w = hQ/kT 

h = Planck's constant/27r 

k = Boltzmann's constant 

T = T(a) 

L? = resonant frequency in rad/s 

T = temperature in degrees Kelvin, 

Since the density operator is diagonal in the number representation for all a,  we can 

13 



simply count photons and then process the result for the best estimate. Suppose 

a = TR pabtb = [e w(a) -1]-1 (54) 

We a re  essentially modulating the temperature in a nonlinear fashion. p . (a)  is given 
J 

by 

If we receive k photons, our estimate is given by plugging (55) into (52) with i = j .  

2 Example 2. 

Suppose our random variable A can take on two values s and t ,  each with probabil- 
ity 1/2. 

state of the system is known. 
value equal to unity. 

A simple Hilbert space is Euclidian space R with the usual inner product. 

Suppose also that, given that the random variable realizes value s o r  t ,  the 
That is ,  the density operator has only one positive eigen- 

Since we a re  talking about a space that we can visualize, let us 

I 

Fig. 3 .  Example - the space R 2 . 

set up a coordinate system in the space so that we can graphically show what is hap- 
pening. Figure 3 shows the reference vectors I and I1 which are  orthogonal. The states 
of the system, given A = s or A'= t ,  are  shown. 
matrix whose elements a re  the inner products with the reference vectors I and I1 of the 
form (iOj), where 0 is an arbitrary operator. 

s )  ( s .  

We can represent an operator by a 

The density operator, given A = s, is 
Its matrix representation is 

cos2 e cos e sin 8 

2 cos e sin 8 sin 8 

The reader should verify this. We can also interpret this in the following way. If 
we expand the density in terms of the eigenvectors I and 11, we obtain 

ps = z z 9 . i )  ( j  i, j = I and 11. (57) 
1J 

Similarly, we obtain 
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COS& e -cos 8 sin 8 

2 -cos e sin 8 sin 8 - 

Using (26), we obtain 

- 
i/z(stt) cos2 e 

1/2(s-t) cos e sin 8 

1/2(s-t) cos e sin 8 

1/2(stt) sin2 e 
q = 1/2(sPSttP 

The optimal estimator of A is 

The eigenvectors and eigenvalues of the optimal operator a re  shown in Fig. 4. Note 
that when s = t, the optimal operator is SI, as  expected. 

2 Fig. 4. Example - the space R 

A simple interpretation of the optimal estimator is a s  follows. A transmitter pro- 
duces one of two possible E-fields. 
operator, with eigenvalue 1, for some mode of a bounded region, and has polarization 
given by one of two directions: perpendicular to the field propagation direction, and sep- 
arated by angle 28. The optimal receiver, from the results above, passes the received 
field through a polarizer whose center line bisects the angle between possible received 
field polarizations. A photon counter after the polarizer determines which of the eigen- 
values is the estimate (depending upon whether o r  not a count is received). 

The received field is in an eigenstate of the number 
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2 . 2 . 2  Cram6r-Rao Bounds 

The idea of a quantum equivalent for the Cram6r-Rao bound is due to Helstrom.' I 
shall rederive his result, as well as a number of other bounds, The classical equiva- 
lents and applications can be found in Van Trees.  3 

a. Random Variables 

Suppose the a priori density of a set  of L random variables p(a) is specified. Sup- 
-a A 

pose we also know the multidependent conditional density operator p-. 

estimator of A. 
L space R . 

vector B(a) as 

Let A be any 
the eigenvalues of measurement A are  mapped into the 

A 
That is ,  

A - 
We can think of A as a set of L commuting operators. Define the bias 

-- 
a~ - B(5) = TR p-(A-aI) (62) 

and call the components b.  (a). 
J -  

Require that 

It follows that 

a A  
d /da . [ p (a) bi (a) ] = (d/da . [ p (a) 3) T R p-( ai- aiI) 

J - -  J 

t p(a) TR [(d/da.p')(ci-aiI)] J - p(a) 6( i ,  j ) ,  (64) 
A A 

where a. is the jth component of the operator A, and a.  is the jth component of the ran- 
dom variable A. J J 

L Integrate both sides of (64) over R . Using ( 6 3 ) ,  we see that the left side vanishes. 
We obtain 

a A  
6 ( i ,  j )  = RL 1 p(2) TR p-(ai-aiI) (d/da.lnp(a)tL.)  da, 

J J -  
where 

The reader should verify (65) by substitution. 

Form the vector z 

d/daL In p(a) - I t LL 
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Form the 

G =  

- - 

matrix 5 
T RL 1 p(a) TR da 

1 

0 

0 

1 0 

H1 1 

Hij 

H.. = R L  1 p(2) TR pa[(d/dailnp(a))+Li] - [(d/da.lnp(a))tLj] J ds. (69) 
1J 

Since the expected value of the square of a Hermitian operator is non-negative, we have 
G semipositive definite. Expanding the determinant, we obtain 

Det G = G l l  Det H - Cof H l l  2 0,  ( 7 0 )  

where Caf H l l  is the cofactor of H 
H...) We get 

in matrix H. (The matrix whose elements a re  11 

1J 

(7 1) 11 G l l  9 Cof Hll/Det H = H , 

where H1' is the (1, 1) element of H-'. Using this Same technique, we obtain the bound 

(7 2) 
1 p(a) TR pa(Zi-aiI) 2 da  2 Hii 

with equality iff 
A a - aiI = C k.(d/da. lnp(a) tL . (a ) )  
i J J - J -  

j' 
for some set  of constants k 

The reader may wonder about the choice of the symmetrized derivative of (66). We 
a 

could have defined the more general derivative d/da.p- = 1/2 
J 

infinitely many solutions. 
tion gives the tightest bound. 

b. Nonrandom Variables 

If we use this form, we find that the unique Hermitian solu- 

Suppose we wish to estimate a vector 2 whose a priori  density we do not know. We 
stipulate that our  estimator must be unbiased at a point a in a ball about zo. That is, 

-0 

a~ 
TR p-(A-aI) = 0 in some ball about _ao. (73)  

We then must have 
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at a= a 
-0 

TR p-(ai-aiI) = 0 
a A  1 

at a = a  
-0' 

RL TR p'[~.(;.-a~~)] = 6 ( i ,  j )  
J 1  

(74) 

(7 5) 

where L.  is defined in (66). 
J 

Proceeding exactly as  in the random-variable case, except for the absence of the 
integration, we obtain 

. .  
(JJJ is the ( j ,  j )  element of J-') 

with equality iff  

A a .  - a.1 = C ki(a) Li(a), 
J J  

where 

a 
J . .  = RL TR p-L.L.. 
1J 1 J  

Note that 

H . .  = 
1J 

where 

K . .  = 
1J 

Result (76) 

(77) 

(7 8)  

Example 3 .  

the density operator in a slightly different form, we have 
Suppose we consider again the harmonic oscillator of Example 1. Writing 

+ a -wb b p = ( l -e -W) e 

w -1 a = ( e  -1) . 
Taking the derivative, we get 

d/da p- a = (a(a+l))- '  (b'b-a) p-. a 

In this simple case, L commutes with pa and is given by 

(7 9) 

L(a) = (a(a+l))- '  (b'b-aI). 

We obtain the bound 
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(82) 
a A  2 a 2 -1 TR p (a-al) >, (TR p L ) = a(at1).  

From (81) we see that we have the condition for equality and that the optimal oper- 
t ator is b b, that is, photon counting. 

2. 2 .3  Bhattacharyya Bound 

There is a tighter bound than the Cram6r-Rao bound, the Bhattacharyya bound. I 

shall next derive its quantum equivalent. 
a Assume that we wish to estimate a nonrandom parameter. That is, we know p but 

not p(a). Require that our estimate be unbiased. 

A 

0' 
TR pa(A-aI) = 0 in some interval around a 

We have 

A 
TR (d/dapa)(A-aI) = 1 

TR (dn/da p )(A-aI) = 0 
0' 

n =  2 , 3 , 4 ,  ... at a =  a n a  A 

Define the derivative operators L. (a): 
J 

dj/dajpa = 1/2 

Form the vector 

Form the matrix 

G = RL TR p a ~ ~ T  = 

where 

'TR pa(2-aI) 

1 

0 

0 

1 0 

F1 1 

F.. 
13 

0 0  

F. . = RL TR paLi(a) L~ (a). 
4 
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Similar to the Cramkr-Rao results we have 

at a = a  (88) a "  11 
0' 

TR p (A-aI)' 2 F 

This is the Bhattacharyya bound, which includes the Cram&-Rao bound for the case 
wherein we only go to the first derivative. 

2. 2 . 4  Barankin Bound 

There is a bound, called the Barankin bound, which includes the Cram6r-Rao and 
Bhattacharyya bounds a s  limiting cases. 
to  be defined, it takes on a value that is the performance of the optimal unbiased esti- 
mator, provided certain conditions a re  met? That is, it is maximally tight. It should 
be emphasized that the best estimator at a fixed point a, which is unbiased in an inter- 
val about a, may not be optimal elsewhere in that interval. Once again, we state the 
condition for no bias : 

When maximized over a testing function, soon 

A 
TR pa+h(A-aI) = h; in some interval S 

containing the point a. 

Define the symmetrized translation operator 

Define the real-valued testing function g(hi) for discrete points hi. We have 

N A N 
RL C TR paL(a, hi) g(hi)(A-aI) = C hig(hi) (91) 

1 1 

for all finite N,  hi in S and testing functions g(hi). 

I TR AB\ 

From the Schwarz inequality 

G TR A2 TR B2, we obtain 

We shall now show that the sup of the right side of (92) over all testing functions is 
achieved by the optimal unbiased estimator at the point a 

0' 
theorem of Banach. 

Firs t ,  we must refer to a 
8 

Theorem 

Let $2 be a space of Hermitian operators with inner product 
assume that pa is positive definite.) Assume i2 is complete and 
hi in the set  S. 

If there exists a constant C such that 

( x , Y >  = TR paxy. (We 
contains L(a,  hi) for all 
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for all hi in S and finite N,  and real-valued g(hi). 
tional on the space such that 

Then: There exists a linear func- 

F(L(a, hi)) = hi for all hi in S (94) 

and 

Furthermore, by the Riesz representation theorem, we have a member of Q such 
that 

TR paFL(a, hi) = hi for all hi in S (95) 

2 TR paF2  S C . 
Let Co be the inf of all C satisfying (93) .  
with 

Then: We have an element of the space Fo 

for all hi in S (96) 
TR p a FoL(a, hi) = hi 

TR p a F E  S Co. 2 

But, by definition, F t a1 is an unbiased estimator. We have 
0 

2 TR p a F Z  3 sup = co. 
h i€  S TR pa(Z g(hi)L(a, hi)) 
and N 

Thus R = Fo t aI is an element of Q satisfying 

TR path(R-aI) = hi for  all h in S 

2 2  TR pa(R-aI) = Co. 

(97) 

(98)  

We can choose Q to be the completion of the space spanned by the L(a, hi). The opti- 
mal operator lies in this space. 
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111. QUANTUM FIELD 

3 . 1  QUANTUM FIELD IN A BOUNDED REGION 

I shall be concerned throughout this work with measurements that can be made at 
a fixed time in an imaginary box in space which I shall call  the measurement region. 
The field in the measurement region wi l l  a r i se  from two sources. 
be a thermal-noise field, not always white in space, but always stationary. 
be a message field arising from a distant transmitter. 

Usually there will  
There will 

Quantum mechanics tells  us how to describe the outcomes of commuting Hermitian 
operators measured on the field in such a box. 
to  the estimation of parameters imbedded in an electromagnetic field. 
ments may be difficult to  car ry  out physically. 
ments made over a time interval at a fixed plane in space can achieve the performance 
of the optimal fixed-time quantum operators. 
found indicated that a multi-time measurement performs better than a fixed-time mea- 
surement, provided the measurement region is large enough. We may think of the 

multi-time estimate as a physical implementation of the quantum estimator, since per-  
formance is the only cr i ter ia  of interest. Justification for  using the fixed-time mea- 
surement restraint is that the concepts of multi-time measurement a r e  not well 
formulated, at  present. 
described in te rms  of interaction Hamiltonians between system and apparatus can be 

put into correspondence with fixed-time Hermitian operators on the proper space. (This 
last statement is not verified in general.) 

We shall apply the tools of Section I1 
Such measure- 

We shall show that physical measure- 

Furthermore,  no examples that I have 

Furthermore, it seems likely that multi-time measurements 

To discuss the quantum field, authors2' usually write down the classical field in 
a bounded region in t e rms  of the modal solutions to Maxwell's equations in that region. 
The volume of the region may in the end go to infinity. 

source-free cube in t e rms  of the plane-wave solutions t o  Maxwell's equations. 
fixed time t, the expansion is 

We shall expand the field in a 

At a 

E( r , t )  = i 1 4- exp(i(k. x-%t))- CEJ exp(-i(k* ;-%t)) , - 1 A 

where 
3 V = L  

E = 2 ~ r / L ( k ~ < ~ t k  t k  ) 
Y Y  z z  

kx, k k a r e  integers between --oo and 03 
Y' z 

k = (k:+k3k31/2 = %/c 

( 9 9 )  

c = speed of light 
e = a unit vector in the i direction. 
4 

i 
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Quantum mechanics tells us  to  t reat  each mode as an independent harmonic oscil- 
lator (see Appendix B). We form the E-field operator by replacing Ck with the annihila- 
tion operator b 
E-field in shorthand (single polarrzation) as 

t r(. 

and replacing C1' with the creation operator bk. We write down the k' k 

i k . r  where.+ ( r )  = e . 
The commutation rules a r e  

k 

[bE, bj] = 0 bk, bj = 6(k, j). 1 'I 
We see that the E-field operator, evaluated at different points in space does not in 

general lead to  commuting operators. 
For our purposes, we shall be concerned with those modes that a r e  contained in a 

band of frequencies with % z S, the carrier frequency. 
equations by B S  /ZV. 

ponents kx and k 
message field. 
lying in a narrow cone about some mean propagation direction. 

W e  shall replace B%/2V in our 

In our first applications we shall t reat  plane-wave messages. That is, the com- 
of the propagation vector shall be zero for  all modes excited by the 

Y 
Eventually, we shall treat fields that have their propagation vectors k 

3. 2 NOISE FIELD 

For  situations to be studied here, we shall allow the presence of a complex station- 
a ry  Gaussian random process called noise. 
a completely incoherent field. '' The density operator for  this field, as well as the 
other fields to  be discussed, will be expanded in te rms  of the right eigenkets (eigen- 
vectors) of the non-Hermitian operator bk. 
be expanded in the following form: 

Such a field is sometimes referred to  as 

Glauber has shown that physical fields can 

where 

(102)  

This is referred to as the P-representation. 
mixture of states. 
ability density. 

The function P( ) represents a statistical 
For our purposes (but not necessarily in general) P( ) is a prob- 
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For most of our discussions, we shall deal with the quantum analog of stationary 
complex Gaussian white noise. The density operator of such a noise field is 

t where ( n )  is the expected value of the outcome of a measurement of bkbk. 
For the quantum analog of colored noise, the density operator of L modes is 

A a positive-definite matrix. 

We shall later see  that ( 1  04)  can be put in the form of (1 03 ) with ( n) replaced by 
( n  ) if we make a transformation of modes for  field representation. k 

3 . 3  CORRESPONDENCE 

9 Glauber has shown that a classical, nonstatistical current source radiating into a 
vacuum creates a quantum state that is an eigenstate of the operators bk. 

4- it is an eigenstate of the operator E . 
In particular, 

-iQ t EC(r , t )  = i Ed- bk+k(r,t) e 

for  narrow-band fields. 
The density operator for  a nonstatistical classical current source is 

where 

and 

(108) 
-iQ t . TRpE(r, t )  = 2RLi Z d v  Pk+,(r, t )  e 

That is, the average value of a measurement of the E-field operator is given by (108). 
We make the correspondence that the classical field given by 

(109) 
-iRt E ( r ,  t )  = 2RLS(r, t )  e 
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be equal t o  the average quantum field of (108). 
Thus, we have the Classical-Quantum Correspondence 

If the message field is known statistically, we express its density operator in the 
form of (102), where we average over the a priori message distribution. 

The density operator for  message plus noise is in the form of (102), where we con- 
volve the P( ) densities of the message field and the noise field as we would for  the addi- 
tion of random variables. 

For  the case of white noise plus nonrandom message we have the density operator 

2 
P = ' s  ( l / r (n) )  exp(-/ak-Pk/2/(n)) 'k) ( ak  ak' k 

where the pk a r e  determined by (1 10). 
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IV. PLANE-WAVE CHANNELS 

We shall begin our application of the results of Section I1 by studying plane-wave 
channels. That is ,  we shall expand the E field at a fixed time in a measurement region 
that is infinite in extent in two directions and of extent L in z, the third direction. We 
shall consider only modes with propagation vector in the z direction. 
will be done on a pe r  unit a rea  basis in the equiphase plane: We shall expand the E-field 
a s  

All calculations 

-iwk ( z /c -t ) 1 i q z / c - t ,  + 

E(z, t )  = i 2 [bke -bke  

z E [0, L]; t fixed. (112) 

We have assumed that the field is narrow-band. That is ,  

ii%/ZL iiQ/2L. 

We assume that the field a r i ses  f rom thermal Gaussian noise, and a message that is 
time-limited to an interval of length L/c. 
E-field is 

In the absence of noise, then, the classical 

(z,  t )  = 2RLS(z, t , g )  e iQ (z/c-t ) 
Eclass 

z E [0, L]; t fixed; - m = message. ( 1  14) 

We assume that S ( z , t , m )  is of the form S(z/c- t ,g) .  
expanded in the modes of (1  12).  

field at time t. 
of the field available. The message may be a single parameter, a group of param- 
eters ,  o r  a time-limited waveform. We can let the interval T and the distance L = cT 
go to  infinity after we solve the finite L problem. 

This means that the field may be 

We assume that the measurement region encloses the 

Thus quantum measurements made in this region at time t have all 

We have the correspondence between the quantum density operator and the classical 
field a s  follows (for the white-noise case): 

t E [0, TI; T = L/c. 
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4.1 CRAMER-RAO BOUNDS 

4. 1. 1 Single-Parameter Estimation 

I shall now apply the Cram&-Rao bound of Section I1 to the estimation of a single 
parameter imbedded in a plane wave of finite duration. Consider Eqs. 112 and 114. 
Suppose that we have a parameter M whose probability density p(m) is known. 

transmit a plane wave that is classically of the form (see Fig. 1) 

W e  

E(z/c-t) = ZRLS(z/c-t, m )  e in (z/c-t) (117) 

The density operator is given in (1  15) and (1  16). 
must first find the operator L(m) defined in Eq. 66: 

To apply the Cram&-Rao bound, we 

Taking the derivative of (1  16), where the complex number P is P(m), we obtain 

* 8 
where p i  = d/dm(P 1. We can use the.following5: 

bkPk) = PkPk) , 

where bk is the anihilation operator for the kth mode. 

f(bk’ b l )  pm = pmf[(b,tPk/(n)) e-w, @dPk/(  ( n )  +l))ew], 

t where ew = ( (  n)  +l)/(  n); and f (  , is any power series in $ and bk. 
We obtain through algebraic manipulation 

(120) 

We are now ready to  apply the bounds 

h -1 V a r  (M-m) 3 J l l  (unbiased estimator) 

A 
E(M-M)‘ 2 (EJ1 ltK1 1)-1 (random-variable estimator), 

A 
where M is the estimator of M. 
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J l l  = TRpmL(m) L(m) 

(122) 
K l l  = E(d/dmlnp(m))'. 

2 It is straightforward to calculate J l l ,  provided the operators in L a r e  kept in normal 
order by using the commutation rules. 

Using (1 161, we see that 

2 J l l  = 2 (  ( n )  +1/2)-l  2L/(hQT) [: IS'(t, E )  I dt, (124). 

where S'(t ,  m)  = d/dmS(t, - m). Recalling that L = cT,  we obtain 

Equations (12 1) and (125) constitute the CramCr-Rao single-parameter bounds. 
Note that, except for  the factor 1/2 added to the noise, these bounds a r e  identical 
to the classical white-noise  bound^.^ W e  shall defer applications for  a while. 

4. 1 .2  Waveform Estimation 

To estimate a waveform, we can use the classical approach of expanding a time- 
limited portion of the process in a stochastic Fourier ser ies  whose coefficients a r e  
uncorrelated random variables. We shall consider only Gaussian random processes 
which have been described by  other^.^ To guarantee that our coefficients a r e  uncor- 
related and therefore independent, we shall use for our expansion the solutions of 
the following eigenvalue equation. 

where Km(t, u) = E[m(t)m(u)]. 

cases  for which more than one solution for a given X .  exists. W e  shall normalize 
the eigenfunctions to  unit square integral. 

These solutions a r e  orthogonal for  different X. ,  and can be orthogonalized in 
J 

J 
Writing m(t)  in  its expansion, we have 

m(t)  = I: m.Q.(t); t E [O, TI. (127) 
J J  

Assuming that m(t)  is a zero-mean Gaussian random process, the m .  a re  zero- 
mean Gaussian random variables with variance 1 

J 

j ' 
The cost functional that we use for time-limited waveforms is 

C(M, M) = E so (m(t)-m(t)) dt. 
A T A  2 
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If we expand our estimate in the functions +.(t) (we complete the set if  it is not 
3 

already complete), 

A A 
m(t) = Z m.+.(t) 

3 J  

A A 
C(M,M) = E I: (m.-rn.I2. 

J J  

If the process m(t)  has finite 
ficients m .  to form our estimate 

3 

power, and if we estimate only a finite number of coef- 
m(t) ,  then the cost is given by A 

A N A  2 C(M, M) = E Z (m.-m,) t 
1 Nt1  

For a given problem, the second sum in (130) is always negligible for  sufficiently 
large N. We shall formulate our estimation problem as an estimation of the first 

N coefficients. When this is done, we shall let N go to infinity. 

a. Memoryless Channels 

We assume that an analog message source produces a sample function of a 
Gaussian random process for an interval T sec long. 
complex envelope of a plane-wave field in a no-memory manner, based on the mes- 

sage. 

A modulator produces the 

That is ,  the classical field is given by 

E(z,  t)  = 2RLS(z/c-t, m(z/c-t)) e ifi (z/c -t ) 

The fact that S(t, m(t))  is only a function of m(t)  and not m(u) for u in [0, T] is what we 
mean by memorylress. Let us expand m(t)  in its Karhunen-Lohe expansion as given 
by (126- 127). 

N 
m(t) = m.+.(t) (truncated series).  

1 J J  

Call the set of N coefficients the random vector E. 
CramBr-Rao bound of Section 11. 

We have the correspondence 

We a re  now ready to apply the 
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S(t, m(t))  = S(t,m) = i z ( f i f i / z ~ ) ~ / ~  p, exp(i(wk-Q)t) 

pk = Pk(m) 

2 2 
Pm- = s ( l/T( n, exp(-lak-pk I /( n)) ak) ( ak d ak- 

k 

Define for notation 

d/dm.P = p i .  (134) 
J k  

To apply the bound, we need to know the operators L .  defined as in Eq. 66. Pro- 
ceeding as in (118- 120), we obtain 

J 

L .  = 2 ( (  n)  +1/2)-l [(bk-pk)p~+cb:-p;,pk]. 
j k  

The quantities J . .  are given by 
1 J  

-1 i j *  
pkpk . = RLTRpmLi(m) L.(m) = 2 RL 2, ( (  n)  +1/2) 

J i j  3 

We must now call upon Eqs. 132-133. 

pk = -(2L/fiQ)1/2 ( l /T ) i  s: S(t, m) exp(-i(%-Q)t) dt 

p i  = -i(2L/fiQ)1/2 ( l /T )  .fz [d/dm(t)S(t, m)]  Q j ( t )  exp(-i(%-Q)t) dt. 

We need to  know Kij. 

Since 

K.. = E(d/dmilnp(m))(d/dm. lnp(m)). 

the m .  a re  independent and Gaussian with variance A 

LJ  J 

it follows that 
J j '  

(133) 

(135) 

(139) 

W e  know from Mercer 's  theorem that we can write the message correlation function as 
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Define the truncated kernel 

Clearly, the inverse of this kernel over the set of functions spanned by the first N 

eigenfunctions is 

Define the kernel 

where S 1 ( t , g )  = d/dm(t) S(t, - m). 
Define 

It follows that 

f o r i , j =  1,2 ,..., N. T H.. = EJ.  . t K. .  = so +(t) 9.(u) NH(t, u) dtdu 
1J 1 J  1J  J 

From previous results, 

A 2 G . .  = E(m.-m.) . 
J J  J J  

But we also have 

Hjj = J Q j ( t )  +j(u) NH-l(t,u) dtdu; i , j  = 1,2, ..., N, 

3 1  



If we multiply (147) by NH-l(u, z)  N K m ( ~ ,  t )  and integrate on t and u, we get 

K (x, z) = NH-l(x, z)  t 1; NH-l(u, z) J(t ,  u) NKm(x, t)  dudt. N m  

Now define 

* 
D(t, u) = E(S'(t, =IS' (u, m)). - 

Recognizing the impulse function in Mercer 's  form, we obtain 

Plugging in and letting N go to  infinity, we obtain 

t4c  s H-l(u, z)  D(u, u) Km(x, u)  du 
Km(x, z)  = H-l(x, z )  9 

fin( ( n) +1/2) 

(153) 

(155) 

which implicitly determines the bound. Except for  an additive factor of 1/2 in the noise 
term,  (155) is identical t o  the classical bound of white-noise memoryless  channel^.^ We 
have (see Eq. 128) 

A 
C(M, M) 2 s;f H-'(t,t) dt. (156) 

b. Channels with Memory 

Suppose that the modulator for  our plane-wave channel is preceded by a time-variant 
filter that operates upon the message. The input t o  the modulator is 

The modulation now creates the envelope 

S( t ,m)  = S(t, a(t)). 

W e  must replace (138) with 

- h(t, v)  +.(v) exp(-i(wk-Q)t) - dtdv. 
J 

We now redefine J(t ,  u) as 

(159) 
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where Da(z, z) = E ld/da(t)S(t, a(t)) 1'. Equations 147- 152 still hold with (160) sub- 
stituted 

4.2 DIRECT APPROACH - DOUBLE SIDEBAND 

4 .2 .  1 Analysis 

The preceding results are applications of the Cram&-Rao bound to  plane-wave 
fields. We have not yet used the resul ts  of Section I1 for optimal estimators. I 
shall now discuss a case for  which we can solve for  these estimators. 

Suppose we have double- sideband modulation. That is, the plane-wave complex 
envelope is given by 

Expand m(t) in its Karhunen-Lohe expansion 

We assume that m(t) is very narrow-band compared with the carrier frequency !2. 

Thus fa r ,  we have expanded the E-field as 

Suppose that we expand the E-field in the functions +i(t) instead of the sinusoids. That 
is ,  we expand the narrow-band field operator as 

We have performed the following transformations 

c .  = -2  b r k jk' I k  

j. 
The first equation defines the r .  the second defines the c 

Since the +.(t) form a complete orthonormal set and the exp(i(wk-Q)t)/fi  also form 
Jk' 

J 
a complete orthonormal set ,  with respect t o  the narrow-band functions that we a r e  
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considering, the c .  a r e  a unitary transformation upon the b 
the commutation rules  

The ck therefore obey 3 k‘ 

[c .  c 1 ’ 0  
3’ k 

Therefore we have the same operator algebra a s  before. 
a nonrandom source is in an eigenstate of the c 
white noise, we can expand the density operator in the right eigenkets of the c 

In particular, the E-field for 
For  operators. We assume no noise. k 

k’ 

where ckak) = akak). 

We have the correspondence 

is2 (z/c -t ) TR paE(z , t )  = 2 RL m(z/c-t) e 

Therefore we must have 

It is apparent then that each message coefficient affects one mode of a product space 
of many modes. The optimal estimator for coefficient k is an operator on mode k. 
Since the optimal estimators a re  on different modes, they all commute. We shall 
now solve for these individual optimal estimators. Our message estimate is the 
set of individual estimators whose outcomes a r e  used with the message process 
eigenfunctions. 

Our optimal estimator for mode k must be a solution of 

Fortunately, it is not too difficult to convolve Gaussian functions. We obtain 
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where 

(170a) 

(170b) 

Using the algebra of boson  operator^,^ we find 

The e r r o r  associated with the optimal estimator is given by 

A 2 ‘k( ( n)/2f1/4) 
E(Mk-Mk) = 

Ak/x + (n)/2 + 1/4 

Although we have not yet interpreted what the optimal estimator is physically, we see 
that the estimation e r r o r  is the same as in the white-noise classical case, with the 
exception of the added t e r m  1/4. 

The obvious question i s ,  What does (171) mean physically? To answer this, we 
turn to  a section on measurements involving photon counters and local oscillators. 

4.2.2 Implement at ion 

a. Heterodyning and Homodyning 

We wish to  find a physical measurement corresponding to  the quantum operator 
ck + c+ k’ 
measurement if  the moment-generating function of the physical measurement out- 
come is the same as the moment-generating function of the quantum measurement out- 
come. In Appendix A, it is shown that the output of a photon counter which has a plane 
wave comprising a message field, Gaussian noise, and a strong local oscillator impinging 
upon it is one of the following classical signals (after normalization): 

We  shall call a physical measurement an implementation of a quantum 
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o r  (173) 

g(t) = 2 RL(S(t) eih) + n(t) 

E(n(t)n(u)) = (lX2/2c)(( n )+ l )  6(t, u), 

(heterodyne case) 

where v is a classical frequency highpass compared with S(t, - m). 

or homodyning. 
The choice depends upon whether the local oscillator is adjusted for heterodyning 

Suppose we homodyne, and then correlate the classical output g(t) against the func- 
tion +.(t). The number thus obtained will be 

J 

g. = s. t n. 
1 1 1) 

where 

s = i S(t, E) +i(t) dt (for real  S(t, E)), 

and ni is a zero-mean Gaussian random variable with variance 

E(ni)' = (Ein/2c) ( (  n)/2+1/4). (175) 

Let us now compare this random variable gi with the outcome of a measurement of 
(bjtbf)/2,  the sum of the annihilation and creation operators previously called c 

and c t  
J '  

j 
We have the quantum relationship 

-s (b i tb j )  /2 
) = T R p m  e -s (out come) 

J E(e 

p j  = s.(Zc/E.in) 1/2 . 
J 

Performing the calculation, we obtain 
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Thus the outcome is a Gaussian random variable with mean p .  and variance ( n)/2 t 1/4, 
for real  S(t, r m). 

able as g 
relating corresponds to a measurement of the operator b 
determined by the function against which we correlate. 

J 

Comparing this with (174), we see that the random variable is the same random vari- 
except for the multiplicative constant ( Z C / ~ ~ Q ) ~ / ~ .  Thus homodyning and cor- 

t i' 
t bk, where the index k is 

We can obtain the imaginary part  of the complex envelope for complex o r  imaginary 
S ( t , s )  by homodyning with a local oscillator 90" out of phase with the car r ie r .  This, 
combined with correlation against one of the mode functions, corresponds to a mea- 
surement of b.-b. /2i. We can make one o r  the other of these two measure- 
ments, but not both. This is not surprising, since the operators b. t b.  and (bj-bl)/i 
do not commute. 
envelope S(t, s), we can t r y  heterodyning. 
g(t) by sin (vt) to  obtain 

t 
J J  

( J  3 
If we wish to measure the real  and imaginary parts of the complex 

We then multiply the classical waveform 

g,(t) = -(IM S(t, - m))(  1 -cos 2vt )  t (RL S(t, 7 m))  sin 2vt  t n,(t). ( 178) 

Similarly, multiplying by cos (vt), we obtain 

g,(t) = R L S ( t , S ) ( l  t cos2v t )  - ( IMS( t ,g ) )  sin 2vt t n,(t), (179) 

where 

and n,(t) and n (t) a re  independent Gaussian random processes. 

against + .(t) to  obtain 

2 
Since the envelope S(t, E )  is lowpass compared with frequency v, we can correlate 

J 

where 

2 
E(nlj)  = (IiQ/Zc)(( n)/2+1/2). 

We obtain the rea l  part of the coefficient in a similar fashion by using the waveform 

g,(t). 
Comparing (18 1) with (17 5), we see that the penalty for heterodyning rather  than 

homodyning in  order to  obtain the rea l  and imaginary par t s  of the envelope coeffi- 
cients is to have twice a s  much quantum noise on each coefficient. That is ,  we 

have the factor 1/2 rather than 1/4 added to  the thermal noise on each part of 
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the complex coefficient. 
We might ask what operator heterodyning corresponds to. Authors sometimes talk 

of a noisy measurement, of the non-Hermitian operator b In a paper by Gordon 
and Louisell" measurement of an operator that has a complete set of right eigenkets 
(but not necessarily orthonormal) is discussed. 
the two par ts  of the outcome of measurement b. is 

j' 

The moment-generating function for 

J 

uRL( outcome) evIM(outcome) E e  

where u = 2RL(s) and v = -2IM(s). 
Thus we see that except for  a multiplicative factor, the two par ts  of the mea- 

surement of b. a r e  the same random variables as the two par ts  of the physical 
heterodyne-correlation measurement. 
stant to make the two measurements exactly the same. There is another interpre- 
tation of the heterodyne measurement in  t e rms  of operators. 
measure the two noncommuting operators b t b.  and i b.-b. 
has no signal on it. 
Preshield the mode so that its density operator is 

J 
W e  can always multiply by the proper con- 

We wish to, but cannot, 

. Specify a mode that 
Call the creation and annihilation operators of that mode bf and bf .  j~ ( J  :> t 

where ( x )  is much l e s s  than one and can be made arbitrari ly small by adjusting the 
black-body temperature associated with the signal-free mode f .  

On the product space of modes j and f ,  measure the two commuting opera- 
to rs  

G1 = 1/2 (bktbL) t 1/2 (bf+bf+) 

G2 = 1/2 i(bk-bL) - 1/2 i(bf-bf). 

Since the operators commute on the product space, they can be measured simul- 
t aneously. 
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uG l(outcome) vG2(outcome) 
e 

= T R p  m pf ( e U G ~ + V G ~ )  

= TRpm exp {(u(bktbl)/2) t iv(bk-bi)/z) 

- TRpf exp{(u(bf+bf+)/Z) -iv(bf-b:)/2} . 

We can call upon a fact of operator algebra 

eA eB = B] iff [A, [A, B]] = 0 

and [By [A, B]] = 0. 

It follows that 

uG (outcome ) vGi (out come ) 
e 

Since ( x )  is negligible compared with unity by choice of the measurer,  we see that G1 
and G correspond to the heterodyne-correlation measurement of the envelope coeffi- 2 
cients, except for a multiplicative factor that we can provide. W e  can think of mode f 

as the image band of a heterodyne measurement that can be shielded against thermal 
noise and extraneous signals, but not against zero-point fluctuations contributing quan- 
tum noise. 

b. Implementation 

With a physical interpretation of the operator b .  + b .  now at hand, we can interpret 
What we must do is 

+ 
J J  

the optimal receiver given by the operators specified by (171). 
homodyne the received field in  the interval [0, TI. The resulting classical signal will 
then be 

We could then obtain the coefficients m .  t n .  by correlation; multiply each coef- 
ficient by the constant of (171) and then reconstruct the estimate by forming the 
ser ies  with the message eigenfunctions + .(t). 

J J  

J 
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(189) 

I 

2m ( t )  cosat (A+2m(t) )  9 A  I 
c - - FILTER 

+NOISE +NOISE A 9  - 

A mi = giXi/[(EQ/Zc)(( n)/Zt1/4)tXi]. 

A ( t )  

The net effect of these operations corresponds to putting g(t) through a filter which 
is the optimal white-noise filter for the noise given in (188). 
classical systems, the performance is clearly given by (172).  

sideband modulation at optical frequencies, the optimal receiver is the classical receiver 

From our knowledge of 
Thus if we use double- 

BEAM COMBINER 

\ 

Fig. 5. Double-sideband receiver. 

with a quantum homodyne operation at the front end. (See Fig. 5.) The optimal perfor- 
mance is the classical performance with the added t e rm 1/4 added to the noise covari- 
ance. 

Examination of the Cram&--Rao bound of (155) yields the same result, as expected. 
The t e rm D(u,u) is unity of DSBSC modulation. If we hypothesize a solution of the 
form H-l(t, u) given by 

we find that such a solution does in  fact exist, and that the hi a r e  given by 

Xi = hi t hiXi[4c/(BC2( (n) t1/2))]  

The lower bound to the estimation e r r o r  is the same as the estimation e r r o r  
for the optimal operator of (172), a s  in  the classical case.  
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4.3 OTHER APPLICATIONS 

4. 3. 1 Pulse-Position Modulation 

Suppose we wish to use the classical analog of a pulse-position modulation system 
for parameter communication. The received complex envelope is 

That is, the envelope consists i n  a displaced pulse that is contained in the measurement 
region for all possible displacements. 
(This assumption will  be explained in Section VII.) We have the bound 

We shall assume that S(t, m )  is a rea l  function. 

where 

S’(m, t)  = d/dm S(t-m) = -d/dt S(t-m). 

The question remains about the implementation of a measurement that has performance 
close to the bound, if such a measurement exists. 
dix A to  obtain 

Suppose we homodyne as in Appen- 

It is clear that the classical Crambr-Rao bound for this baseband problem is the same 
as the bound of (193). Furthermore, under high signal-to-noise (thermal plus quantum 

contributions to  baseband noise) conditions, the classical maximum-likelihood estimate 
is efficient. That is, we correlate g(t) against S(t-x) and pick the value of x that gives 
the highest correlation, where x l ies  in a region where m is expected to  be a priori. 
There may be a better estimate that performs better at low signal-to-noise ratios, or 
which is easier  to implement. (This will  be discussed in Section VII.) 

4.3.2 Phase Modulation 

The optimal classical phase-modulation receiver at high signal-to-noise ratios has 
been shown” to have the form of a phase-locked loop. We shall next show that a similar 
structure is optimal for the quantum case at high signal-to-noise ratios. F i r s t ,  we must 
evaluate the bound of (155) for pulse modulation. We have the classical envelope 
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From (153) we obtain 

Thus the Cram6r-Rao bound is the same that would result from double-sideband 
modulation at baseband with a classical received signal of the form 

E(n(t)n(u)) = (fiQ/4c)(( n)+1/2) W, u). 

Suppose that we use the receiver structure shown in Fig. 6. The output of 
the photon counter, by an analysis quite similar to  that in Appendix A is 

1/2 g(t) = (P)”‘ s in  [p(m(t)-$(t))] t n(t) t A/2, 

where the noise is given in (197). 

COUNTER 

UNREALIZABLE 

LINEARIZED RECEIVER 

Fig. 6. Pulse-modulation receiver. 

As in the classical case, we make the ,assumption that the realizable estimate 
is good enough, s o  that with high probability 

1/2 r(t) = pm(t) t n(t) t A/Z, ( 2 0 0 )  

where n(t) is given in (197). 

of classical estimation theory, we know that the unrealizable filter (realizable with delay) 
achieves the Cram6r-Rao bound, provided (199) holds. Quantitative analysis of the loop 
for the classical case is available.” These analyses hold here if we replace classical 
noise by thermal plus quantum noise given in (197). 

From our discussion of double-sideband modulation, as well as from our knowledge 
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V. SPATIAL-TEMPORAL CHANNELS 

5.1 CRAMI~R-RAO BOUNDS 

We shall now extend the results of Section IV to channels in which the received field 
is of the form 

(201) 
- i R t  . (r, t) = 2 RL S(r,  t ,  rn) e -ifit t 2 RL n ( r , t )  e EClass 

We shall make measurements of that portion of the field which is contained in a bounded 
region of space called the *fmeasurement region," The field modes in which we are  inter- 
ested will  be those that a r e  narrow-band around the carr ier  frequency R. 

shall expand the field operator as follows: 

Therefore we 

E ( r ,  t) = 22 d v  -ifit t bl+E(r, t)  eiRt], 

+ where bk and bk satisfy the commutation rules 

[bk. bj] = 0 

and the ijJk(r, t) a re  orthogonal functions, where 

+ ( r , t )&i(r , t )  d 3 r = V6(k, j ) ,  
'M.R. k 

where subscript M.R. indicates the measurement region. Our problem is to estimate the 
parameter by quantum measurements in the measurement region at fixed time t. 

5. 1. 1 Single-Parameter Estimation 

a. White-Noise Case 

The problem of estimation of a single parameter in white noise is very similar to 
the plane-wave case. 
at fixed time t. 
eigenkets of the bk. 

Our measurement corresponds to a Hermitian operator measured 
We can write the density operator of the field in terms of the right 

Using (118), (120), and (123) ,  we obtain 
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From (203) and the orthogonality of the mode functions we obtain 

where 

SI (r, t ,  m) = d/dm S(r, t, m). 

The bound is 

A 
v a r  (M-m) >, (Jll)-l 

E(M-M) A 2  3 (J1 l t K 1  1)-1, 

where 

K l l  = E[d/dm1np(m)l2. 

It remains to specify the relationship between m and the complex envelope S(t, r, m). We 
shall defer this for the present. 

b. Colored Noise 

Suppose that we do not have spatially white noise. That is, suppose the classical 
noise has the following correlation function: 

E[n(rl)n(r2)] = 0 (n(r) is noise envelope) 

(r2) = Rn(r  r ). * ] 1 ’ 2  

The covariance R is a complex function in general. Let us pick the mode functions 
upon which we shall expand the field’to be solutions of 

n 

We shall make measurements at a fixed time, so we have suppressed time dependence. 
The density operator of the field consisting in signal plus noise is 

where 
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( nk) = (zv/lin)Nk* 

The classical field is related to the pk by (203). 
have 

Similarly to the white-noise case we 

(210) 
* 

J l l  = 2 C  ( (nk)t1/2)- l  p&.  

Define the kernel 

Using (203), we get 

* 3 3  ~ 1 1 ~  (z/v) JM.R. SI (u, t ,  m) Qn(u, v) S'(v, t ,  m) d ud v. 

This clearly reduces to the white-noise case when all of the Nk a re  equal. 

5. 1. 2 Waveform Channels 

a. Memoryless 

We shall solve for the waveform Cramer-Rao bound. We assume that an analog 
source produces a sample from a zero-mean Gaussian random process in the inter- 
val (0, T). We expand the message m(t) in its Karhunen-Loeve expansion 

where the mi a re  independent Gaussian random variables of variance Xi. 
From the results on plane-wave memoryless channels and from the results on 

spatial channel single-parameter estimation, we obtain (for colored-noise expan- 
sion) 

-1 j* i J . . =  Z R L Z  ( ( n k ) t l / 2 )  pkpk, 
1J 

where J.. has been defined in (136), and P i  has been defined in (134). Y 
We assume that the message undergoes a no-memory modulation given by 

F(t, m(t))  = modulator output. (216) 

We now assume that the complex envelope of the field in the measurement region is a 

linear functional upon the modulator output. That is, 
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We have suppressed the time of the measurement. 
Using the correspondence 

we obtain 

Define 

D(u, t) = E[d/dm(u)F(m(u), u)d/dm(t)F"(m(t), t)]. 

Define Qn(t, u) as  in (21 1). Define J(t, u) 

It will  be found that J ( t ,u )  satisfies 

Proceeding as  in Eqs. 147-155, we obtain 

Km(t,u) = H-'(t,u) + 2 RL so T Km(t,v) J(v, W) H-"(w,u) dvdw 

For  the special case of white noise 

Km(t,u) = H-'(t,u) + 4 RL Jo T Km(t,v)(l in({n)+l/2))- '  A(W,V) D(V,w) 

- H-'(w,u) dvdu, 

where 

h ( r ,  w) hc(r ,  * v) d 3 r. A(w, v) = JMaR. 

b. Channels with Memory 

The function h (r, t) constitutes a memory operation of the channel after modulation. 
C 

There may be a memory operation before modulation, too. Suppose we have 

46 



a(t) = Jo m(u) h(t, u) du F(t, a(t)) = modulation 

m - 
SOURCE 

If we define 

1 r ----- -- 
T R ~ E =  E ( r ,  m) MODULATOR - TRANSMITTER 

L ------- -I 

where 

Eq. 220 and therefore (221) still hold. 
Recall that although these equations look abominable, they can sometimes be for- 

mulated in state variables, ''' l3 or  Fourier-transformed for infinite-time stationary pro- 
cess  problems. 

5 . 2  APPLICATIONS 

We are  interested in the following situation. A transmitter emits a classical plane 

wave of the form (see Fig. 7) 

i O(z/c-t) ET(z,  t) = 2 RL ST(t-z/c) e , 

where the envelope depends upon the message. 
aperture is 

The classical field received over an 

GENERAL SPACE TIME CHANNEL 

J 

(MEASUREMENT REGION) 
-if it  

'I;i..CIf71 TRpE = 2 R L  ST (t,_m)*h(r,t) e 
I I I 

J 

( MEASUREMENT REGION) 
2 -iQt 'I- TRpE = 2 R L  kST ( t ,m)C ( s , t ) e  

LINEAR 
CHANNELS OR 

APERTURE 
I MULTtlgLlCATIVE CHANNEL 

J 

Fig. 7. Spatial temporal channels. 
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(229 )  
-iQt E ( s , t )  = 2 R L  SR(t,m) C(s , t )  e . R 

We assume that the coherence bandwidthI4 of the channel is large compared with the 
envelope bandwidth so  that, neglecting propagation delay time, we have 

where k represents attenuation. 
tially dependent upon the message, too. 

Occasionally, we shall have the aperture field spa- 

C ( s ,  t),  which represents multiplicative fading, is assumed to be known here. Even- 
tually, we shall t reat  C(s,  t) as a random process. 

We assume that the received field at the aperture is composed of plane waves, all 

of whose propagation vectors lie in a cone such that none of the vectors deviates much 
from the perpendicular to the aperture. If we call the angle of deviation from perpen- 
dicular 0,  we require 0 small enough that cos 0 is approximately unity for all vectors. 

The field propagates through the aperture into the free space behind the aperture. 
At some fixed time, we shall make a measurement in the space behind the aperture 
which comprises our measurement region. If we assume that the aperture field is time- 

limited, then if  we wait  long enough, all of this field wi l l  propagate into the space behind 
the aperture. 
in the measurement region at some time u is given by the impulse response 

We assume no reflection from the space behind the aperture. The field 

where the time integration ranges over the duration of the aperture field. 
Now consider the white‘-noise case for the single-parameter and waveform Cramer- 

Rao bounds. 
surement region field. 

We a re  interested in the relationship between the message and the mea- 
For parameter estimation we need 

(232) 
- C * ( s2 , t2)  d 3 2  rd  sld2s2dtldt2. 

We have allowed for the possibility that the message affects both the spatial and tem- 
poral character of the aperture field. For waveform estimation we need 

4 3 h( r ,  u, t) h (r, u, v) d r = A(t,  v) 
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where we have associated F(m(t ) , t )  with S,(t,m), and A is defined in (224). 

Theorem 

If the field impinging upon the aperture is composed of plane waves whose propaga- 
tion vectors a re  all nearly normal (cos e = l ) ,  then with respect to such a field 

Proof: Let S(s ,  t) be the envelope of an incident field satisfymg the conditions of the 
theorem. Expand the field in an orthonormal ser ies  with real  mode functions. 

We know that the energy that enters the measurement region behind the aperture is given 

by 

* 
IS(., t) 1 d2sdt = c Z sksk. T 

w =  $0 Saper 

This follows from the restriction upon.the propagation vectors. Since the measurement 
region is assumed to be empty space with no absorption o r  reflection, the energy in the 
measurement region after all of the field has propagated through the aperture must be 

2 3  W = (S ( r ,u ) l  d r 

- d 3 2  r d  sld2s2dtldt2. 

Since this must hold true for all complex numbers s. and the mode functions a re  com- 
plete over the type of field that the theorem allows, the statement of the Theorem (234) 
must be true. 
that the theorem allows. 

J 

Remember that the impulse is interpreted with respect to the type of field 
This important result follows: 

* 
A(t,u) = c Saper C(s , t )  C (s, t) d2s 6(t,u). (23 9) 

If C(s , t )  is a constant, then Eq. 224 reduces to the plane-wave equation, where 
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D(v,v) is multiplied by the constant squared times the area of the aperture. 
parameter bound become s 

The single- 

J l l  = ( 4 ~ / K R ) ( ( n ) t 1 / 2 ) - ~  J J  ISk(t,s,m_) C(s , t ) I2  d2sdt. 

The waveform bound becomes 

where 

* 2 B(t) = Saper C( s , t )  C (s,t) d s. 

Remember that both of these bounds a re  for  the white-noise case. In the event that the 
waveform is coupled to the spatial character of the envelope according to 

then the Cram&-Rao bound is given by 

t4c  Km(t, v) Ds(v, v) H-l(v, u) dv 
Km(t,u) = H-'(t,u) , 

f iQ((n)+l /2)  

where 

5. 2. 1 Pulse-Position Modulation 

Suppose that the modulation of (229) is given by 

E R ( s , t , m )  = 2 RL f(t-m) C ( s )  e - i R t  . 

The Cram6r-Rao bound is given by (240). 

If we assume that f ( t )  is real  and that the signal-to-noise ratio is sufficiently large, then 
we can achieve the bound as follows. 

- i R  t L.O.(s, t)  = 2 R L  A C(s)  e . 
Homodyne with a local oscillator of the form 

(246) 

The output of the photon counter is obtained in a manner similar to the derivation of 
Appendix A. After some normalization it is given by 
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2 2  
g(t) = f(t-m) J I C(s )  I d s t n(t) 

(247) 2 2  E(n(t)n(u)) = @Ei/2c)((n)/2+1/4) s IC (s ) I  d s 6(t,u). 

We now process classically by correlating g(t) against f(t-b) and picking the value of b 
that gives highest correlation as the estimate. 
mate achieves (245), which is also the classical bound for (247). 

At high signal-to-noise ratios, this esti- 

5. 2.  2 Double-Sideband and Phase Modulation 

For DSBSC or PM,  use the local oscillator of (246). The performance is the same 
as for the plane-wave case, except that we must multiply D(v, v) of the plane-wave chan- 

ne1 by s 1 C ( s )  1 
high signal-to-noise ratio for the phase-locked loop to be operating efficiently. 
optimal receivers a re  those of the plane-wave case, except for the different local 

oscillator (see Figs. 5 and 6). 

2 2  d s for the spatial aperture channel. A s  before, for P M  we require 
The 

5. 2 . 3  Estimation of the Angle of Arrival of a Plane Wave 

Suppose that the classical aperture field envelope is 

The aperture has length L and M in the x and y directions, respectively. The system 
is shown in Fig. 8. 

We wish to estimate the angle of arrival 8. 

is known approximately a priori so that sin 8 =: e. 
We shall assume that the angle of arrival 

INPUT FIELD -1 

PLANE WAVE ARRIVING AT APERTURE 

INPUT FIELD 

FOCAL SPOT 

OPTIMAL RECEIVER 

Fig. 8. Angle -of-arrival modulation. 
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We have the CramCr-Rao bound given by (240). 

2 2  (Q/c) x dxdy (249) 

where ,Q/c = 2a/X. 

The bound can be achieved by using a lens and a photon counter as follows. Place an 

ideal rectangular lens in the aperture. The focal plane field classically is given by 

bdY 
i( 2 a / ~ r )  (xx' tyy' ) S(s , t )  e 

Japer 

sin (c,x") sin (x y')  

S(x', y ' ,  t) = ( 1 / X r )  

f ( t )  
X r  

2 = -ML , 
(c,x") (C2Y') 

where c1 = aL/(Xr); c2 = aM/(Xr); x" = x' - re ,  with r = focal length. 
the local oscillator 

Homodyne with 

-iQt sin (c y') e 2 L. 0. (y, t) = 2 RL A f(t) 9 

(C2Y') 

where we integrate the photon counter output over time and the y coordinate, and look 
at this count as a function of x. 
dix A that the counter output as a function of x is 

W e  find in a manner similar to the derivation of Appen- 

where 

Here we have neglected thermal noise. 
process in spatial white noise. 
against the function 

Thus we now have a spatial position-modulation 
The optimal receiver correlates the waveform g(xl) 
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sin (clxI-z) 

c (XI -z) 
, 

and estimates r0 as the value of z with the largest correlation. We know that in the 
case of high signal-to-noise, the performance of .this estimator is given by 

(that is ,  the classical Cramer-Rao bound). Evaluating the integrals, we obtain 

Comparing (254) with (249), we see that when thermal noise is negligible, and when 
the baseband signal-to-noise ratio is high, the receiver of Fig. 8 achieves the Quantum 
Cram&-Rao bound. As we shall see, it is reasonable to neglect thermal noise at optical 
frequencies. 
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VI. FADING CHANNELS 

In the previous sections, the classical field, given the message, w a s  assumed known, 
except for an additive Gaussian noise process. 
field, given the message, is a random process, whose parameters depend upon the mes- 

sage. 
channel (that is, we do not 'assume knowledge of C ( s , t )  of Eq. 2 2 9 ) ,  we have such a 
circumstance. Here bounds on the estimation of the parameters of a field with the 
parameters imbedded in the covariance of the envelope of the field (which will  be 
assumed a zero-mean Gaussian random process) will  be derived. We shall assume 
that at a fixed time, the E-field in a region of space to  be called the measurement 
region is 

It is often the case that the classical 

In the multiplicative fading channel, when we do not assume that we know the 

-iQu E ( r , u )  = 2 RL S( r ,u )  e (255) 

We shall assume that S(r,  u)  is a complex Gaussian random process satisfying 

E[S(r,u)] = 0; E[S(r, u)S(rr, u)] = 0 

4. 

E[S(r, u)ST(rt,u)] = K S (r, r t ,  u). (256) 

We can expand the classical field at fixed time u in the measurement region in te rms  
of orthogonal spatial functions 

where 

Ks( r ,  r ' ,  u)  +i(rl) drt = ki+i(r), 
M. R. 

where M. R. indicates measurement region. By using (256) and (257), it is straight- 
forward to show that 

E(s.) = 0 
1 

E(s.s.)  = 0 
1 J  

E[sisy] = kid(i, j )  

and the r ea l  and imaginary parts of si a r e  uncorrelated. 

coefficients a r e  also independent. 
Furthermore,  since the process is assumed Gaussian, all  of these uncorrelated 

The reader should note that not as in previous 
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sections, any additive noise has been included in  S(r, u). 

6.1 CRAMiR-RAO BOUNDS 

6. 1. 1 Single-Parameter Estimation 

Given Eqs. 255-258 and assuming that we expand the quantum field operator as 

E(r ,  t )  = Z 4- -iQt + b++*(r,t) k k  eiat] , (259) 

we have the density operator given by 

( nj) = (2V/Ea ) k.(m). J (261 1 

The reader is cautioned that the eigenmodes, eigenvalues and thus the operators bk and 
b depend upon the message 111. 
modes, since we a r e  concerned with a fixed time measurement. 
signifying the single-parameter case. 

t 
k We shall drop the time dependence u in the eigen- 

We shall set  2 = m 

For  the density operator of (260), Helstrom” l 5  has shown that the quantity J l l  is 
given by 

J~~ = z z [ l / ~ ( n ~ + n . ) + n ~ n ~ l - ’  J nl kJ .n! Jk’ (262) 

(Note that we drop the brackets around the nk f o r  convenience), where 

(l/V)’ s +i(r, m)[d/dm Ks( r ,  r f ,  m)] Gj(rf ,  m )  drdr f  = kf  = (EQ/2V)nf kJ’ . (263) kj 

Define the kernel 
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Using the fact that 

we must then have 

When the field in the measurement region is due to a field propagating through turbu- 
lence and impinging upon an aperture we have 

S(r ,  m )  = f h ( r ,  s ,  t )  SR(s, t )  C(s, t )  dsdt t .f h(r ,  s ,  t )  n(s,  t )  dsdt (noise term). 

(269)  

This situation is described in section 5. 2. 

isfies the conditions for (234) to hold. (We have suppressed the measurement time u.) 
We shall assume that SR(s, t ,  m)  is known, given m, and that C(s,  t )  is a Gaussian ran- 
dom process with 

We shall assume that the aperture field sat- 

E[C(s, t)C(sl, t')] = 0 

E[C(s, t)C*(sl, t f ) ]  = Kc(s, s f ,  t ,  t'). 

It follows that 

* * Ks(r, r f )  = Kn(r, rl) i- f S  h ( r ,  s ,  t )  h ( r f ,  s ' ,  t ')  S ( s ,  t )  S (st,  t ')  KC(s, s f ,  t ,  t ')  dsdsfdtdtf, R R 

(271) 
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where 

* 
Kn(r ,  rl) = .f h(r ,  s, t )  h ( r f ,  sf,  t f )  . K,(s, sf,  t, t t )  dsdstdtdtl 

and 

I .L 

SR(S,t)Kc(S, sl,t,t')S~(sI,tl)tK,(s,sI,t,tl) yk(Sf,tl) ds'dt.1 = lkyk(s , t )  

k .  = 1 .  c/v 
J J  

Define the kernel 

* d/dm Kg(s4, t4, s 1 1  , t ) d s l , .  . . , dt4, (274 1 

The reader should not be discouraged by the notation. After we discuss waveform 
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estimation, we shall apply this bound. 

6. 1. 2 Waveform Estimation 

A s  usual, we shall expand a time-limited sample function of a Gaussian random pro- 
cess, which is the message, as 

m(t)  = C mi+i(t); t E (0, TI, (275) 

where the m.  are independent Gaussian random variables. 
1 

For the density operator given in (260) ,  by analogyto (262) ,  we have 

-1 1 *m n n .  j k j k  j k j k '  Jlm = C Z [1/2(n t n  ) t n  n ] 

where 

n1 Jk = (ZV/hQ)(l/V)'J $;(rl) d/dml K s ( r , , r 2 , m )  +k(r2) drldrZ. (277) 

Now assume that the measurement field a r i ses  from an aperture field as follows. 
modulator produces the waveform F[t, m(t)]. 

A 
The received aperture field envelope is 

R ( s , t , m )  = F[t,m(t)] C( s , t )  t n(s , t )  
.!, 

E[R(S,~,~I)R~'.(~~,~',ITI)] = K g ( s , t , s ' , t f , rn ) .  (278) 

Exactly as in the single -parameter case, we obtain 

J . .  = (2c/ha) 2 .f T ( s l , t  l , . . . , s 4 , t  4)Kg(~2,t2,~3,t3)K~(S4,t4,~ i , t  ) d s l , . - .  ,dt4, (279) 

where T(  ) is defined by (272-274), and Ki denotes differentiation with respect t o  mi. 
g 

1J 1 1  

Define 

Define 

1 J ( t ,  u )  = E C Z .f [ 1/2(n t n . )  t n n.1- Q .(t,  s ,  z ,  s f )  Q. (u,  r ,  v, rl) dsdsldrdrldzdv. k J k J  kJ Jk 

(281) 

It follows from (279) that 
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E J . .  = ( Z C / B Q ) ~  f +i(t) +.(u) J ( t ,u )  dtdu. 
1J 3 

Following the derivation of section 4. 1. 2,  we obtain 

2 Km(t,u) = H-'(t,u) t (2c/EQ) Km(t,z) J ( z ,v )  H-'(v,u) dzdv. 

Recall that 

D2(t, u) = d/dm(t) F[t, m(t)] d/m(u) F"[u, m(u)]. 

* 
* D2(t2, t4) F[tl, m(tl I] F [t3, m(t3 I] Kc(s2, t2,  s3, t3 ) 

* Kc(s1,t1,s4, t 4 ) dsl ds2ds3ds4dtl dt3. (286)  

In spite of the way (286) looks, we shall use it to study intensity modulation, phase 
modulation in Section VII, and at the end of this section. 

6. 2 APPLICATIONS 

6. 2 .1  Estimation of the Level of a Gaussian Random Process 

Suppose the aperture field containing a parameter to  be estimated is given by 

R ( s ,  t )  = ml/'C(s, t )  t n(s ,  t), 

where m is to  be estimated. 

Kg (s , s 2, t , t2 ) = m Kc (s , s2, t , t 1 t Kn( s , s2 ,  t , t2 ). 
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Expand K ( ) in its Karhunen-Lohe expansion 
C 

Kc(s1,s2Stl,t2) = CkYk(s13tl) y i ( s2 , t2)*  (288) 

Assume that the noise is spatial-temporally white s o  that we can expand Kn( ) as 

J1 = ( Z C / E Q ) ~  Z ( ~ ~ ) ~ / [ ( 2 ~ / 8 Q ) ( N + m c ~ ) [ l  t (2c/8Q)(Ntmck)]] 

Consider the case wherein all of the eigenvalues ck equal b fo r  k = 1, 2,  . . . , K and a r e  
zero otherwise. 

J1 = Kb2/[(Ntmb)(LiQ/2c t N t mb)]. (291) 

We can achieve the performance of the bound by counting photons in the aperture plane, 
in the modes that correspond to  the yk(sl , t l ) .  That i s ,  we measure 

K 
X = Z b:bk 

1 

in the spatial modes corresponding to  the y k (s 1’ t 1 ) by letting the field propagate into a 
counter-filter system. 
depending upon what the modes look like.) After processing, the optimal estimator is 

(The problem of mode separation can be simple or  complicated, 

M = Z b:bk(fis2/2cK) - N ’[: IF- 
To show that this operator achieves the bound, we must recall that the density operator 
of the signal modes is 
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where 

x = (Zc/TiQ)(N+mb). 

The ref ore 

m ”  T R p  M = m  

TR p (M-mI) = J;:. m A  2 
( 2 9 5 )  

Examples of situations in which the photon counting could be implemented a re  as 
follows. We could have a case in which thermal noise is negligible. Then we could 
focus the entire received field on the aperture onto a photon counter, and count in the 
region of the focal plane where we expect message signal, and during times when we 
expect message, (These restrictions a r e  required, since the noise is not identically 
zero.) A s  we shall see in Section VII, thermal noise is in fact often negligible. In another 
case, we may have only temporal fading. 
pared with the channel coherence time and widely spaced c.ompared with the coherence 
time. 
during times when pulses a r e  present. 

We transmit K pulses that a re  narrow com- 

We focus the field onto a photon counter, count in the central focal spot, and only 
Each pulse corresponds to a mode. 

6. 2. 2 Optimal Diversity 

Suppose the function C(s , t )  of (287)  is at the control of the communicator. Such a 
That is ,  it is the product situation could occur if, for example, C ( s , t )  = f ( t )  C ( s , t ) .  

of a message function at the control of the communicator, and an uncontrollable channel 
process. 
will  vary. Suppose we constrain the product bK to be fixed. 
fixed amount of energy. 
by maximizing J 

1 

F o r  different f(t) ,  the magnitude of b and the number of diversity paths K 
That is ,  we receive a 

For  a given message m, we can minimize the e r ro r  variance 
on K, keeping Kb = P fixed. The optimal diversity is given by 11 

?!? = mP/[N(N+hQ/2c)] 1 /2 . 
opt 

The performance at optimal diversity is 

A [N(N + E n / 2 ~ ) ] ~ / ~  
V a r  (M-m) = mP 

A 
V a r  (M-m) = 4Nm/P for 

= E ~ r n / ~ c p  for 

- 

q+ 2N + Ei/2c 

[N (N + Ti Q/2c )] 

N >> TiQ/2c 

N <<EQ/Zc. 

( 2 9 7 )  
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In Section VI1 we shall discuss under what circumstances we can achieve near optimal 
diversity over a wide range of m. 

6. 2.3 Radar Ranging of a Point Target 

Suppose the aperture envelope is given by 

R ( s ,  t )  = f(t-a) C(s )  t n(s, t )  

( 2 9 8 )  
.I- s f(t-a) f'*(t-a) dt = 1. 

That is, the coherence time of the channel is much larger than the transmitted pulse 
f(t-a). 
we wish to  range a slowly fluctuating target," or  in a P P M  problem on a slowly fluc- 
tuating channel. 

We wish to  estimate a. Such a situation might occur in a radar problem when 

We can expand the covariance of the envelope as follows: 

4c Kg(s l , t l ,  s2,tZ) = f ( t  -a) Z b y ( s  ) y*(s ) f (t2-a) 1 k k l  k 2  

where 

and b = c t N. 
is a matter of algebraic manipulation to  plug (299) into (274), keeping T( ) in its eigen- 
function expansion of (264). 

That i s ,  the functions f(t-a) y ( s )  and +.(t, s )  form a complete set. It 
k k  k J 

We obtain fo r  r ea l  - f(t)  

c 2 [f'(t)]' dt 
k J l l  = 2 

k N(Ntck) t ( fiG?/Zc)(Ntck/Z) 

This is the same as the classical result1' for  the case fiG?/Zc << N. We shall discuss 
receiver structures that perform close t o  the bound in Section VII. 

6. 2.4 Coherently Unestimable Parameter Case 

There is a situation of significance classically when we have a white noise contribu- 
Suppose we have tion to  each mode which is much stronger than the signal contribution. 
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where 

nk = n t ck 

n >> ck. 
for all k 

Then we can clearly write 

It follows that 

Similarly for the aperture case 

2 2  2 
Jll = (zc/fiQ) (n +n)-'S (d/dm Kg(s l , t l , s2 , t2 ) /  dslds2dtldt2. (304) 

Classically, fo r  n >> 1, this is called the coherently unestimable parameter or  C. U. P. 

case. 
frequencies, the noise photon number per mode is much less  than 1 for most cases. If 
the signal ck is to  be much less  than the noise photon number, then we need a very large 
number of modes for  reasonable performance. 

The application to optical fields is probably not great. This is because at optical 

6. 2. 5 Angle-of-Arrival Estimation with No Thermal Noise 

Consider the case when the aperture envelope is given by 

c(t) ei' -( Z.rr/X)iex R(s , t )  = e 

X E  (-1/2L, 1/2L); y E (-1/2M, 1/2M) t E (0, T). (305) 

That is, we are trying to estimate the angle of arrival of a plane wave with no spatial 
fading, and no thermal noise. The situation is similar to that shown in Fig. 8. Examining 
(274), it is easy to  show that 
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where 

and 

Kc(tl , tZ) = ’ CkYk(tl) yz(t2)/ML* 

Expanding T( ) in the modes (l/ML)l/‘ yk(t)  and Q. (s ,  t ) ,  we get 
J 

= c ck(2c/En)(2rrL/x)2/3 J1 1 

Comparison of (307) and (249) for  the case of negligible thermal noise, shows that except 
for the replacement of p .f f ( t )  fs(t) dt with 
optimal receiver converts t o  a spatial P P M  problem by sending the received field 
through a rectangular lens. In the Section VII, we shall discuss P P M  receivers for 
the temporal case. 

Kc(t, t )  dt the two bounds a re  the same. The 

Extension to this spatial problem is straightforward. 

6. 2. 6 Angle Modulation 

A s  a final example let us evaluate the waveform bound for pulse modulation. Assume 
that the aperture field is given by 

The noise is spatial-temporal white, and we a r e  assuming a slowly fading channel. We 
have 
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F[t,m(t)] = e iP  [ m(t I] 

t ) = c c c c y k ( l  s ) u.(t  J 1 ) y+(s k 2 ) u*(t j 2 ) T(sls t1 ,  * * * 's4'  4 

where nkm = (2c/fin)gkm. 
If we assume 

ck = P/K; k = 1,2,  ..., K 

0;  otherwise 

we get 

2 2 2  z RL(EQ/ZC) p P T/K 6( t  t ) 

N(N t PT/K) t (FiQ/2c)(N t PT/ZK) 
J(t,,t4) = " t constant. 

Assuming no message energy at DC, we obtain 

2 2  ( Z P  P /K)T s Km(t,v) H-'(v,u) dv 

N(N t PT/K) t (fiQ/4c)( 2N t PT/K) 
Km(t,u) = H-'(t,u) t 

(3 10) 

(313) 

(314) 

Notice that (314) approaches the known channel bound when P/K is much larger than 
N/T, provided we interpret the average power P as the known fixed power of the non- 
fading case. Implementation of the bound with a physical receiver will  be discussed in 
Section VII. 
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VII. PRACTICAL EXAMPLES 

I shall now apply previous results to a number of popular modulation schemes. 
I shall discuss discrete- Sometimes, I shall assume that thermal noise is negligible. 

time and continuous-time systems. 
with their classical counterparts, and compare the various quantum systems to each 
other. I shall comment upon the reasonableness of assumptions regarding signal 
strength and numbers of diversity paths. 

I shall compare the performance of those systems 

Occasionally, formulas and conclusions of previous sections wi l l  be repeated. This 
redundancy makes reading easier than it would be with constant references to previous 
equations and comments. 
the examples presented here include all cases of practical interest. 
ples a r e  of systems that a r e  performing near the lower bounds derived previously. This 
often means that they a r e  performing fairly well. Although these examples a r e  of con- 
siderable interest, many times one might be interested in systems that do not perform 
well because of low signal strength, bad fading, and so forth. 

I.shall not attempt to  deceive the reader into believing that 
In fact, these exam- 

I hope that the results given here w i l l  provide the reader with insight into what types 
of modulation systems and what types of processing would be reasonable in such situa- 
tions. Of course, given a demodulation system that is good at  high signal levels, we 
could calculate i t s  performance at low signal levels. There is no guarantee that some 
scheme that could never achieve Cramer-Rao performance at high levels could not 
be better than the efficient system (at high levels) when the signal strength is low. F o r  
example, I shall present a phase-locked loop demodulation scheme that is efficient at 
high signal-to-noise levels for PM and FM. At other signal-to-noise ratios, other 

demodulation schemes such as the prism-lens discriminator (also to be discussed) might 
be better. Thus these sections, although of interest, a r e  far from the last word on ana- 
log demodulation. 

The material w i l l  be presented as follows. First a discussion of noise and turbu- 
lence w i l l  be given. 
channel and fading-channel conditions. 
performance. The results of Jane W. S. Liu on PCM systems will be included in 
this comparison. 

Then we shall discuss the various modulation schemes under known- 
After that, systems will be compared as to  

7 . 1  QUANTITATIVE RESULTS 

7. 1. 1 Data on Noise 

Our first consideration wi l l  be the specification of the background noise No for  the 
white-noise case. From our formulation, N is proportional to the mean number of 
noise photons per  mode that are due to  background radiation. If we assume that the 
background radiation is black-body radiation at absolute temperature T, then No is 

given by 

0 
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8Q/kT -1)-1 No = fiQ/Zc(e 9 

where 

k = 1.38 X lovz3 J/deg 

ti = 1.05 x J-s 

Q = 1 - 10 X 1015 rad/s for  typical lasers .  

Then for  T varying between 1-300 and for  S2 between 1015-1016, fiQ/kT varies 
5 approximately between 10 and 10 . 

ature of lo4  OK is required for kT to equal fiQ. 
Thus for  the lowest frequency a black-body temper- 

At this point, I would like to make some comments upon units. Assuming that we 
expand the classical and quantum fields in the same eigenmodes, we have 

( 3  16) 
-iat = 2 R L  Bk$k(r, t) e 

E(r' t)class. c 
= 1 m b k + k ( r , t )  e -iQt t bk4Jk(r, t * t) e i Q t  . E(r9 Iquant . 

Assume f o r  the moment that the density operator is that of a pure  state. That is ,  
the mean number of photons and the density operator a r e  given by 

For  a classical plane wave, the energy contained in a mode is 

* 
W = 2BkBk V E ~ ,  k 

where E is the permittivity of free space, 8. 854 X 10-l' Fd/m. 
0 

Therefore, the classical number of photons in the field is given by 

5 
n k = 2BkBk V E ~ / H Q .  

We have the correspondence 

That is, 
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-iQt - -int  (R!2/2V)1'2 2RLPk$k(r, t) e - 2RLBk$k(r, t )  e . 

Therefore 

Thus (318)-(320) imply that we a r e  working in a system of units where E = 1. There- 
0 5 fore the numerical value of the E-field in Volts/meter is 3.35 X 10 times the numerical 

value of the field amplitude in the units used here. 
energy in Joules.) 

(Remember that we a r e  measuring 

Another comment that I wish to make concerns the appearance of the factor c (speed 
of light) in equations like (315). If we performed all of our integrations in space, this 
factor would not appear. Often, however, we transform spatial problems into spatial- 
temporal problems. We know that 

f(z) dz = c Sb/c f(ct)  dt. 
a/c 

Thus for  plane-wave and aperture problems, the factor c keeps appearing in equa- 
tions. 
the spatial correlation function is Rn( rF  r ' )  = Z hnE/ZV$ (r)lClk(r'). k 
plane-wave case, the spatial correlation is 35!2/26(z-z'). 
integrations, we get 

For example, for  a Gaussian noise field with mean photon number per mode 
d 

When we go to the 

If we then transfer to time 

Rn(t,  t ' )  = 9 6(ct-ct') = iihS2/2c6(t-t') = No6(t-t'). (322) 

This is the logic leading to (315). When we solve a spatial problem, the factor c in 
(315) is replaced by unity. 

7.  1.2 Data on Turbulence 

There have been articles describing fading optical signals in turbulence - both from 
the theoretical16 and experimental17 points of view. 

That is ,  
the multiplicative fading process is of the form es(t), where s(t) is a complex Gaussian 
random process. 
fading except when extensions to other types of fading a r e  discussed in section 7. 7. We 
shall now discuss some experimental data of interest for  practical examples. 

If we send an unmodulated ca r r i e r  through the turbulent atmosphere, the spatial cor- 

Theoretical studies indicate that the fading process should be log-normal. 

The results that follow wi l l  be limited, for the most part, to Gaussian 

relation function is given by 

d I (E( r t s ,  t) ,  E (r, t ) ) ]  = exp 1.45 C & S ~ / ~ ( Z T / X ) ~ ,  (323a) 

where s is a displacement in the plane perpendicular to  the direction of propagation, 
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and L is the path length between transmitter and observation plane. 
structure constant. A representative value is 

Cn is called the 
17 

= 2 .3  x 10-8/cm 1/3 . (323b) 'n 

Another measure of turbulence is the effective diameter. If a plane wave is trans- 
mitted through free space and the received signal is heterodyned with a plane-wave local 
oscillator, the signal-to-noise ratio is proportional to the a rea  of the receiving aperture. 
If, on the other hand, there is turbulence, the signal-to-noise ratio w i l l  increase asymp- 
totically to some maximum value as the a rea  is increased. 
signal-to-noise ratio is within 3 dB of i t s  maximum is called the effective diameter. It 
is given by 

The diameter at which the 

3 /5 
Deff = ( .058Xz/C2L) n . (3 24) 

Deff is typically between 0 . 5  cm and 13 cm for path lengths between 4-24 km, depending 
on atmospheric conditions (see Goldstein, Miles, and Chabot ). 17 

7 . 2  PULSE AMPLITUDE MODULATION SYSTEMS 

7 . 2 . 1  PAM with No Fading and Known Phase 

Assume that by some means (perhaps an auxiliary locked-loop system) we know the 
arrival phase of the received signal which is given classically by 

E(r ,  p)  = 2RL A(E/s) '" f ( t )  eint + n(t, p) eint 

* 2 I d  p = s  
r a p e r  

ioT f ( t )  f (t) dt = 1; 

From the results on amplitude modulation, we know that an unbiased estimate of A 
is obtained by homodyning the received field to baseband and correlating the result 
against f ( t ) ,  provided f ( t )  is real. If f ( t )  is not real, our  homodyning must be done with 

an oscillator matched to f ( t )  in time. The variance of the e r r o r  is given by 

A 
V a r  (A-A) = 

No/2 t 1/4E Q/2 c 
E 

Example 1 .  Suppose we assume a black-body radiation of 300°K. From (315) we see 
that we can neglect thermal noise at typical l aser  frequencies in (326). 

our  e r r o r  variance to be IO-'. 
is 1 . )  Then we require an "energy" of E = 

Suppose we wish 
(This might be reasonable if our a priori  variance of A 

The J s /m (for pink ruby laser).  
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quotation marks mean that the quantity E is not really energy. If the pulse duration is 
-12 s, we  have the actual power across the aperture of 3 X 10 W, for A = 1. For 

2 -10 an aperture of a r ea  of 0. 01 m we require 3 X 10 W/m2. (The E-field is 3.35 X .lo-* 

V/m.) 

7 . 2 . 2  PAM with Random Phase 

Laser  oscillators can be made stable to drifts of 1 Hz/s in the laboratory. It is not 
clear whether one w i l l  always know the ca r r i e r  phase o r  wish to  track it. 
incoming ca r r i e r  phase for the signal of (325) is randomly distributed. We shall neglect 
thermal noise in light of the discussion above. We shall sometimes keep the noise 
in the equations, letting it go to zero when convenient< 

Suppose the 

The density operator for the field, when it is expanded so that f ( t )  is one of the tem- 
poral modes, is 

p A  = 1" 1 ( l / r ( n ) )  exp[-l pei'-A dEZ~/fiS21~/(n)] - p ) (p  d2pd+. 
-IT 

We can expand (328) in the number representation 

where w e  have se t  the noise to zero. 
The Cramkr-Rao bound is given by 

d/dAp = (-p t b+ b p) d/dAA 

L = 4cE/AfiS2 (m b'bfiS2 - A') 

TR pLz = (4cEA/Iin)' (1 - 2A/A t ") = 8cE/ES2. (330) 

We see  therefore that the bound of (326) for No = 0 is the same as (330). 
phase causes estimation ambiguities unless A is restricted to positive values. 
maximum-likelihood receiver measures the number operator by focusing the received 

The unknown 
The 

field onto a photon counter that is sensitive in the region of the focal spot. 
is processed by multiplying it by fi52/2cE and taking the square root of that 
maximum-likelihood estimate is not unbiased. If A is a random variable, 
estimator, given that we receive j counts, is 

A 
A. = s AAj e-' p(A) dA/s Aj e-' p(A) dA. 

J 

The count 
number. The 
the optimal 

(33 1) 

It should be emphasized that because the density operator is diagonal in the num- 

ber operator representation for all values of A, the optimal unbiased estimator 
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and the minimum mean-square-error estimator must commute with the number 

operator. That is, counting photons is optimal, provided we process the count 
optimally. 

parameter is A rather than A. 
of the signal field. 
is 

Note that the estimation e r r o r  is independent of the parameter. Suppose the message 
2 That is, the message linearly modulates the intensity 

Call the message B.. The Cram6r-Rao bound to the estimation of B 

d/dBp = (-p t p) d/dBA 

L = 2 c E / b f i n ( m  bt bl5 S2 - B) 

T R  p ~ 2  = Z ~ E / E C ~ B .  (332)  

Here, from the form of L, we see that the maximum-likelihood estimate is efficient 
and is given by counting photons and multiplying by h!2/2cE. 
e r r o r  is proportional to the unknown B. 

true that an estimation e r r o r  independent of the parameter is desirable. 
practical systems often employ companding to make the estimation e r r o r  proportional 
to the signal squared. 
formance the same for weaker and stronger messages, when the criterion is signal-to- 
noise ratio at the output. 

Note that the estimation 
This may not be desirable, but it is not always 

For  instance, 

This results in weak noise for weak signals and makes the per- 

It is not clear whether the modulation wi l l  commonly be linear in intensity o r  E-field. 
Polariza- Internal cavity modulators usually employ intensity modulation around a bias. 

tion modulation combined with an analyzer can be used to generate linear E-field modu- 
lation. 

For any single-valued relationship between the message parameter and the intensity 
B, the Cram6r-Rao bound is given by 

TR pmLk = 2~E/852B(dB/dm)~. ( 3 3 3 )  

How close the maximum-likelihood estimate is to being efficient depends upon the 
relationship between B and m. Essentially, for an efficient estimate to exist the aver- 
age e r r o r  magnitude must be small  enough so that with high probability we have m = m t 
(B-B)dm/dB. 
the estimate is nearly unbiased and nearly efficient as can be checked by the reader. 

A 

A 
This condition, i f  met, over the range of a priori  m will  guarantee that 

Example 2. Suppose that we a r e  using intensity modulation with B varying between 0.1 

and 1. Using the same fre- 

quency as  in Example 1, we require 4 X lomz6 J s/m (calculated for the worst case 
B = 1). 
1 2  X 10"" W/m . 

We wish the e r ro r  variance not to exceed lo-' for all B. 

For B = 1 ,  an aperture of 0.01 rn2  and a pulse length of s, we need 
2 Comparing this with Example 1, it is clear that for intensity 
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modulation we need 4(Bmax/B) times the power for  each value of B, to achieve the same 
e r r o r  variance at  that value of B. 
vantage is 6 dB. 

If B varies in a small  increment, the power disad- 

Example 3. 
channel. We shall estimate using the maximum-likelihood scheme. We restr ic t  A to 

the interval (1, 2 ) ;  therefore, B varies between 1 and 4. 
vided the maximum-likelihood estimate is nearly efficient, and assuming that we desire 

-4 an e r r o r  variance of 10 , we need 100 times the energy quoted in Example 1. We must 
check to see  whether the conditions for  the maximum-likelihood estimate to be nearly 
efficient a r e  satisfied. 
4 X 

0. 1 B1/' (5 standard deviations). Since B is restricted to the internal (1 ,4) ,  we have 

Suppose that we wish to use linear E-field modulation on a random-phase 

From (330) we see that pro- 

For  the energy above, the e r r o r  variance of the estimate of B is 
B. Thus with high probability, the e r r o r  in the estimate of B is l e s s  than 

t (-l/8)(AB)'/B3/' . . . z A t AB/(EA). (334) 

That is ,  we may neglect te rms  in powers of AB/B because with high probability this 
number is less  than 0. 1 B -'I2 which never exceeds 0. 1 for  the a priori  range of B. 

We observe therefore, that for this type of modulation, the condition for efficient 
estimation is coupled to the lower limit of a priori  B (o r  A). 
dard deviation of the B estimate e r r o r  evaluated at the minimum a priori  B (or  A) be 

We require that the stan- 

less  than 0 . 0 2  t imes that value of B. That is, 2Bmin 1/2 (standard deviation of e r r o r  in 

estimating A) divided by Bmin must be less  than 0.02. 

tion of the A estimate < O .  01. 

Therefore (standard devia- 

7. 2 . 3  PAM with Gaussian Fading 

In Section VI, PAM communication over Gaussian fading channels with intensity mod- 
ulation w a s  discussed. In particular, for reasonable performance diversity w a s  required 
(see Eqs. 296-297). For  equal-strength diversity systems, wi th  total average received 
"energy" E J sec/m and M diversity paths, we have 

A 
V a r  (B-B) = 1 /M( Bt  NoM/E) (Bt  NoM/EtME !2/2 cE) . 

The optimal estimator is 

h 

If we assume No << ES2/2c, we obtain 

(335) 

(336) 

(337) 
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If we further assume that for all a priori  expected B we have B/M<< lii2/2cE and 
MNo/E << B, we get 

A 
V a r  (B-B) = ELB/2cE, 

provided 

M >> max [2cEB/IiQ] 
B 

(338)  

No << min [EB/M]. 
B 

This performance is the same as  the intensity-modulated random-phase channel with 
fixed "energy" E. As  in the random phase case we can let B-= A , in which case the 
bound becomes 

2 .  

A 
V a r  (A-A) 3 BS2/8cE. (339)  

Example 4. Suppose B varies in the range 0. 1-1. 0. We wish the e r r o r  variance to be 
Thus we require at least  M = 10 3 To insure this, we require liS2/2cE to  be 

3 diversity paths, and we must have N l e s s  than lii/2c. (If M is larger  than 10 , 
the noise must be proportionately smaller.)  The condition on the noise is easily met 
at room temperatures for laser  frequencies between 
the total diversity is the product of the spatial and temporal diversity. 
of (338)  a re  clearly not always satisfied. In order 
for  an M to exist such that ( 3 3 8 )  is satisfied, it is necessary that No be l e s s  than 

0 

1016 rad/s. Remember that 
The conditions 

In other cases we should use (335) .  

) (if we define much l e s s  than by lo-' for  this case). -2 
10 lin/WBmax/Bmin 

7 . 3  PULSE POSITION MODULATION SYSTEMS 

I shall now discuss systems in which the received waveform is displaced in time 
(or  position for  spatial problems) according to the value of a parameter to be estimated. 

7 . 3 .  1 P P M  with No Fading and Known Phase 

If we know the phase of the car r ie r ,  possibly because of some channel-estimation 
scheme, and i f  the envelope f(t-a) is real ,  the optimal P P M  processor, at high signal- 
to-noise ratios, homodynes the received signal to baseband and processes the result in 
a matched filter-correlator device. 
o r  the displacement that gives the best correlation for  the correlator. 

The estimate is the peak time of the matched filter, 

iS2t i S2t 
f n(t, p )  e E(t, p )  = Z R L ( E / S ) ~ / ~  f(t-a) e 

s = aperture a rea  

f f ( t )  f*(t) dt = 1. (340)  
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The homodyne output is 

g(t) = ( E ) ~ / '  f(t-a) t w(t )  

E(w(t)w(t')) = (No/2tBS2/8c) 6(t, t ') .  

The estimate is given by 

d/dy S g(t) f(t-y) A = 
( y = a  

A V a r  (a-a) 2 (No/2tBS2/8c)/{E(J f ' ( t )  f ' ( t )  dt)}. 

(341) 

(342) 

For the maximum-likelihood estimate to be efficient we require the following approxi- 
mations to hold. 

d/dY S g(t) f(t-Y) dt = -S g(t)  f ' ( t -y)  

= -J (fi f(t-a) t w(t)) f'(t-y) 

= -1 4% (f(t-y) t f '  (t-y)(a-y) + f r f  (t-y)(a-y) 2 /2 . . .) 

f ' ( t-y) dt - J w(t)  f ' ( t-y) dt 1 y=2 

uu -($,-a) fi / f l ( t )  f ' ( t )  dt - fl(t-y) w(t)  dt 

which implies 

(343) 

EXPECT {(;-a)' E(S f ' ( t)  f l ( t )  dt)') = (No/' t BS2/8c) - S f ' ( t )  f ' ( t )  dt. 

That is, 

A No/2 t h R/8c 

E S f ' ( t ) f ' ( t )  dt 
Var (a-a) = 

Whether o r  not the approximation holds depends upon the signal-to-noise ratio and the 
function f( t ) .  

Cram&-Rao bound should be much less  than the ratio of the integral of the square of 
the first derivative of f ( t )  to 1/6 the integral of the square of the second derivative of 

f( t ) .  
atives is zero. 

A check on consistency is that the variance of the e r r o r  obtained from the 

To see  this, notice that the integral of the product of the first and second deriv- 
Thus the f i rs t  t e rm of approximation is the one checked above. 

Example 5. Suppose f ( t )  is the unit energy Gaussian pulse 

f(t-a) = ( z P  2 /T) 1/4 .-pZ(t-a)' 
(3 44) 

Suppose that we neglect thermal noise when compared with quantum noise. The inte- 
Therefore for  consis- 2 4 gra l  of f ' ( t )  squared is p , 

tency, we must specify the Cram6r-Rao e r r o r  variance as much l e s s  than 18 p-'. 
The integral of f"( t )  squared is p /3. 
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Examining (342), we see that the bound predicts an e r r o r  of 0. 18 P-' for  a signal-to- 

noise ratio 8cE/liS2 of 5.55. 
the maximum-likelihood estimate is efficient but only made efficiency plausible. We 

must comment that if  we have no a priori knowledge of A, we would surely have anom- 
alous e r r o r s  caused by correlation peaks that a r e  due to noise alone which exceed the 
signal peak. The bound and approximations implicitly assume that we look at the right 
peak. That is ,  the bound specifies the performance in the absence of anomaly. As the 
signal-to-noise ratio goes up and the a priori  range of A goes down, the probability of 
anomaly becomes small. 

Again, we must emphasize that we have not proved that 

In the discussion above, we required that f ( t )  be real. If f ( t )  were complex, we would 
have to use a heterodyne receiver to obtain the rea l  and imaginary parts. 
noise is much greater than quantum noise, there is no performance degradation, provided 
the signal is strong enough, because of using a complex envelope. The estimator obtains 
the real  and imaginary parts and correlates the signals, which have added noise, against 
their  displaced counterparts. The dis- 
placement which maximizes this sum is the estimate. 
such a scheme is efficient classically. The quantum noise added to each phase because 
of heterodyning is twice as large as the quantum noise added to the desired phase when 
homodyning. 
efficient. 
tages. 
of the magnitude squared of the derivative of the envelope. 
plex envelope 

When thermal 

The correlator outputs a r e  added in the square. 
For  the high signal-to-noise case, 

Thus, when quantum noise dominates, the heterodyne system cannot be 
One might ask whether the use of a complex f ( t )  has any compensating advan- 

The performance predicted by the Cramer-Rao bound is governed by the integral 
Assume that we use a com- 

f ( t )  = f l ( t )  f if2(t)> (345) 

where 

s (f,(t)' dt = s (f,(t))' dt = 1/2 1 f ( t ) f * ( t )  dt = 1/2 

/ ( f i ( t ) ) 2  dt = / (f>(t))' dt = 1/2 j" f ' ( t ) f '* ( t )  dt, (3 46 1 

that is, equal-energy and equal-bandwidth pulses. 
Rao bound by using the pulse 6 f l ( t )  which has the same energy and bandwidth as f ( t ) .  
Therefore when energy, bandwidth, and performance a r e  the only criteria, and it is 
at the convenience of the designer, we should use a real  envelope for f ( t ) .  

7.3. 2 P P M  Random Phase 

We could achieve the same Cramer- 

If we use a real  envelope f ( t )  and if the ca r r i e r  phase is random, we could heterodyne 
with a local oscillator and put the output through a bandpass matched filter or correlate 
each phase against a displaced copy of f ( t )  and add the two correlations in the square. 
The peak of the fi l ter  output power or  the displacement with the best correlation is the 
estimate. Classically, for  high signal-to-noise ratios, this scheme performs as well 
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a s  the known-phase case. 
dyning make this impossible. 
of the received energy to estimate the phase and then homodyne. 
nique that is simpler when thermal noise is negligible compared with quantum noise. 

When quantum noise dominates, the disadvantages of hetero- 
It is possible that the estimator wi l l  use a small portion 

There is another tech- 

We assume that f(t) is real. Focus the incoming field onto a photon counter and 

The incoming classical field is record the number of counts and their  arr ival  times. 
given in (340). (We a re  not going to use the ca r r i e r  phase, so we need not worry about 
it.) The counts form a Poisson process with rate given by 

(347) 

Let me state a priori  that the anomalous behavior of the system is governed by the 

2 y ( t )  = (2c/Ei) E(f(t-a)) . 

possibility of receiving no counts at all. 
ability of receiving no counts is e- 2cE/En. We can write down the probability of 
obtaining N counts at times ti, given that we have at least  one count. 
tioning will soon become reasonable.) 

The reader wi l l  see  this eventually. The prob- 

(This last  condi- 

N d/dt Wit a) 
o = c  

Y(t i ,  a) 

We can then obtain the classical Cram6r-Rao bound to the performance of any esti- 
mate of a based upon the counts. 

N 
= C d/dt In f(ti-a) . 

A I a=a 
a= a 

03 8cE/Ei  1 (f ' ( t)) '  dt 
J l l  = f Pr [ ](!~(a))~ = -A N= 1 1 - e  

V a r  ((;-a)/N# 0)  2 (Jll)- 1 . 

Provided we have at  least one count, the maximum-likelihood estimate is clearly 

(350) 

Note that when the probability of zero counts is small, the bound of (349) is the same as 
the quantum bound of (342) for N = 0. Of course, if we receive no counts, the estimate 
cannot be unbiased. 
ance T2, then the Cram6r-Rao bound and the MAP estimate a re  given by 

0 
If we a r e  estimating a Gaussian random variable with a priori  vari- 

2 -A 2 T (1-e 1 n 
V a r  (a-a) 5 - 

(1-e ') t T28cE/?iSZ (f '( t)) '  dt 
t T' e-' (351) 
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A 
a = O  if N = O .  

Lf f ( t )  is symmetric and unimodal, the maximum-likelihood and MAP estimates a r e  
unbiased (in the nonrandom parameter case, provided we get at least one count). For 

high signal-to-noise ratios (35 1) will  become an equality. 
citly the e r r o r s  caused by anomaly (no counts). 

This equation displays expli- 

Example 6. 
becomes 

Suppose we use a Gaussian pulse as in (344). The MAP estimate then 

A A  
-4p2 C (ti-a) + a/T2 = 0 

1 

A 
= - t{4Np2/( 1/T2+ 4Np2)}. a 

map 

If we use the MAP estimate, we obtain the following results 

co e-X = x -  4aNp2/[ 1/T2 + 4NP2]. N! N= 1 

(353) 

(354) 

+ 3 ( a 2 +  
2 co -X ( N  +N)a  { 'N2 N 

A 2  e 
E(a) = s p(a) 7 

N= 1 

- [4Np2/( l /T2 + 4Np2)I2 da 

co .-A 
= C -  N! [T2 + 1/(4p2N)] [4Np2/(1/T2 t 4Np2)]'. (355) 

N= 1 

Suppose that instead of the MAP estimator we simply use the estimate 7 (the average 
photon arr ival  time). With slight modification of (354) and (355) we obtain for  this es t i i  
mator 

-X E(cI a) = (1-e )a 

E($)' = (1-e -x )T 2 t (1/4P2 N. (356) 

77 



It then follows that by using this estimator the e r r o r  variance for the estimator 7 is 
CO 

(357) 
A 2 -A -A N E(a-a)' = T e t (1/4p2) Z e A /N! N. 

1 

Suppose that we can make the following approximation 

00 (1/4p2) Z e -A A N /N! N UN 1/4p2A = lis2/8cEp2. 
1 

Table 1 shows when the approximation is valid. The e r r o r  variance is then 

A 2  E(a-a) = Tis2/8cEp2 t T2 e-'. 

CO 

Table 1. A e-' Z AN/N! N vs  A. 
1 

Now observe that if the probabi 
bound of (3 5 1 ) be comes 

1. 32 

1. 24 

1. 13 

1. 06 

1.01 

4 

6 

10 

2 0  

100 

(358) 

(359) 

2 ity of no photons is small  and if 8cEP /EL2 >> 1/T2, t ie  

Thus under these circumstances t is an efficient estimator. 
still Example 6 with a Gaussian pulse shape.) 

(Remember that this is 

As a final comment, it should be emphasized that i f  the interval w e  a r e  looking at 
becomes too large, the possibility of a thermal noise count may effect performance, since 
thermal noise is not zero. 

7 . 3 . 3  P P M  Gaussian Fading Channels 

We have the Cram6r-Rao bound for  a Gaussian fading channel given by (Eq. 266) 

T R  pL2 = (2/lin)2 R. T(t ,  u, z, w)  d/da KS(u, z) d/da Ks(w, t) dtdudwdz. 

Assume that the field impinging upon an aperture is 
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R(t,  p )  = y(t ,  p )  f(t-a) t noise. 

Assume 

L 
f(t-a) = Z fk(t-a), 

1 

where the fk( t )  are real  and 

S fk(t) f .( t)  dt = 6(k, j). 
J 

Assuming that the field is composed of plane waves lying in a cone concentrated about 
normal incidence, we use the results of section 5. 1 to obtain 

2 2 dtld pl.. .dt4d p4,  

where 

(363) 

and 

* [ X k X m t  l / 2 ( X k t X m ) ] - 1 .  

Assume that the turbulence is slowly varying enough so that, under the assumption that 
the f (t) a r e  short compared with the correlation time of the channel and disjoint a t  wide 
intervals compared with the correlation time, we may write 

k 

where 

* 2 S v j ( p )  Yk(P) d P = ~ j ) .  

From (364 and (365) we obtain 
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t Z Z Z Z rjklmfk(tl-a) fk(t2-a) fm(t3-a) fm(t4-a) 
j k l m  

where 

x. = (t p . )  
1 i ' i  

-1 
]ro = [ (Zc/ES2)No t ( ( Z C / E S ~ ) N ~ ) ~ ]  

r j k  = 1/[(2c/ES2)(Notbjk/2) + (2cNo/rrs2) 

= I/[& (Notbkj/2tbml/2) t 4c 1 2 

rjklm Es2 7 (5 (Notbkj)(No+bml) 

- r - rlm - ro. 
jk 

Plugging into (363) and taking advantage of the fact that the fk( t )  a r e  disjoint in time, 
we obtain 

2bij  s (fk(t))' dt 
2 T R p L  = Z Z 

j k No(Notb .) t (Es2/2c)(Notb /2) 
kJ kj 

(367) 

If we assume no thermal noise, we obtain 

T R  p L 2  = Z Z  (8cb ./Ea) s (fk(t))' dt. (368) kJ 

Having the bound of (368), we can t r y  the estimation scheme used previously for  the case 
of random phase and no thermal noise. 

Suppose we focus the incident field onto a photon counter and record the counts and 
their arr ival  times. (Since thermal noise is not identically zero, we should count only 
in the region of the focal plane where we expect signal energy.) We can w r i t e  down the 
probability of N counts at  arr ival  times ti, given that we have at least one count, and 
given the message value a. 
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where 

y(t, r)  = Z Xrkjrkj(fk( t -a))  * 2 2c/fin - 

That is, we write down the density, given the mode amplitudes, and average over these 
amplitudes. We have used the fact that the fk( t )  are time disjoint. 

N L  

1 1  
d/da Pr [ ] = Pr [ ] C X - 2d/dt In fk(t-a) 

From this we obtain the Cram6r-Rao bound 

(370) 

i t=t 

If we assume that we have enough diversity and that the average energy is high enough 
so  that the probability of no counts is small, we can set  the denominator to unity to 
obtain 

A fin 
2 '  V a r  (a-a) >, 

8c C Z bkj J (fij;(t)) dt 
(373) 

provided we get at least one count. 
(373) gives the same bound as (368). 

If the probability of no counts is small  enough 

2 If our estimate is of a Gaussian random variable with a priori  variance T , we 
obtain the bound 

2 -x 2 T (1-e 1 
t T' e-', A 

E(a-a)' >, 2 
(1-e-') t E Z C  b . 

fin kJ 

(374) 

where X = C C  b .2c/hS2, which displays the anomalous behavior explicitly. The 
maximum- likelihood estimate is 

kJ 
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N L  I 
Z C d/dt In fk(ti-a) 
1 1  

= 0 .  

2= a 
(375) 

The MAP estimate is given by 

N L  

1 1  
2 Z Z d/dt In fk(ti-a) t a/T2 = 0 .  

A I a=a 
(376) 

We observe that fo r  enough diversity, the performance bound of (373) is the same as 
the random-phase bound (349), provided the bandwidth of fk ( t )  is the same a s  the band- 
width of f ( t )  and we set  the average energy for the fading case equal to the fixed energy 
of the nonfading case. 

We could have derived the Cramer-Rao bound without the condition that there be at 
least one count. In that case, the t e rm in the denominator of (371) would be unity, 
regardless of diversity. This is a 
more just comparison anyway, since (368.) is not exclusive of anomalous behavior. 

The resulting bound would be identical to (368). 

One should also note that although (368) w a s  derived for  the Gaussian case, (371) is 
the Cram6r-Rao bound for this type of measurement, regardless of the nature of the 
fading. That i s ,  (371) holds even i f  the mode amplitudes a r e  correlated, nonzero mean, 
and so  forth. 

Example 7. 

that is, a Gaussian pulse with bandwidth p . 
in space. 
diversity paths a r e  nearly equal-strength. The actual received energy is the sum of 300 
independent Gaussian random variables of approximately equal variance (sum in the 
square). The standard deviation of the sum of the squares of 2N independent GRV's is 
(3/2N)'/' times the expected value of the sum. Thus we see that for N = 150 the stan- 
dard deviation is 1/10 the mean. Thus we see that with high probability, we shall not 
have a deep fade. For  an exact analysis we need the distribution of a chi-square 
random variable with 2N degrees of freedom. The MAP estimate, under the assump- 
tion of a Gaussian parameter, is given by (376). lf we use the estimate t instead, 
we obtain 

Suppose that we use only spatial diversity and we use f ( t )  given in (344), 
Suppose that we have 150 diversity paths 

Assume that the 

2 

Suppose that the total average energy Z b. is 10 ES?/Zc. 
J 

-Ur) 
-A(;) e 

N ! N  ' E(a-a) = T  e 
A 

. '( ) t 1/(4p2) C (377) 

s imilar  to (354) and (355). If the fading is Gaussian, we have 

82 



-WJ = n J S ( rbj)  -1 exp[-rjrj * 
e 

1 

J J 

1 
= I3 (Zc/EQtl/b.)-’ (bj)-’ = II (lt2cb./EQ)-’ 

J 1 J 

where E is the total, average energy, and J is the number of diversity paths. 
inequality becomes an equality for J sufficiently large. 
can make (378) an equality. 

is, the larger is the reciprocal of the left side of the inequality. Its limit is the reciprocal 
of the right side of the inequality. 

The 
For  J = 150 and ZcE/Q = 10 we 

The inequality follows from the familiar compound interest formula. The larger  J 

To evaluate the second half of (377), note that 

therefore 

(379) 

J J n ( 1t2cE( l-u)/EL? J)-l - 
1 

(ltZcE/EQ J)-l 

du 
u 

for  ZCE/ES~ J small. 

diversity path small, the fading channel performance is the same as that of the non- 
fading channel fo r  the estimator t and a Gaussian pulse (provided we substitute average 
energy where we had fixed energy). 

Thus, given a large number of diversity paths making the signal-to-noise ratio per 

- 

7.4 PULSE FREQUENCY MODULATION - THE PRISM- 
LENS DISC RIM INAT OR 

I shall now discuss the estimation of the frequency of a burst  of sinusoid with a com- 

Suppose that we receive a plane wave over an aperture for the period (-1/2T, 1/2T) 
bination of a prism and a lens. 

given by 
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1/2 ei(n tpa)t E(t, p )  = 2RL(P/s) , 

where the aperture a rea  is s, and there is no noise. 
We wish to estimate the parameter A. The Cramkr-Rao bound is given by (125): 

8cPp2 1/2T 2cPT3P2 
t d t = -  2 T R p L  =- 

fin '-1/2T 3fin 

Examine the following estimation scheme. Send the plane wave through a prism that 
disperses the spectrum. The dispersion relationship is 

A 0  = YAW. (383) 

Send the dispersed field through a lens that is small enough that for all  prism outputs 
its aperture is completely covered with field. The arrangement is shown in Fig. 9. We 

t a  [-f T,hT] 

/ 
AREA = s 

/ 
P a  p a + a / ~  

COMPLEX ENVELOPE SPECTRUM 

PRISM 

FOCAL 
PLANE Y @ = B o 7  

E ( x , y , t )  

Fig. 9. Prism-lens discriminator fo r  pulse frequency modulation. 

can write the classical field in the focal plane of the lens, assuming a rectangular aper- 
ture  and that for all  values of A the dispersed field is contained in a cone not too far 
from normal incidence. 

T (P / s )~ / '  ML sin (nMy/Xr) i(s2-pa)t 
e 

nMy/Xr 2 E(X, y, t )  = 
ZnXr y 

where +(t, x) = t/ry(x-pyra), and the s t a r  denotes convolution. Convolutions a r e  
easier to  perform in the transform domain where the factor 
We obtain the following results. 

is a positional shift. 
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If: 

1 

T/2y < rL/X 

.f f ( t )  dt = 2ayL/X 

2TrLy 
T/2 

3 J f (t) dt = -- X 
I 

Then : 

(symmetric) 

If: 

Then : 

1 t .f g(t)  dt = T 

I I I 

(symmetric) 

Suppose that we now process the signal by counting photons in the focal plane 
and noting their x coordinate. 
except in position rather than time. The Cramer-Rao bound for an estimate based 

We use the processing described for P P M  systems 

85 



upon the counts is 

If: T/2y < TL/X 

-1 3lin 2TrLy 
V a r  (a-a) A 2 - [(p2T3PM/s)(h/2~y) ( - $1 . 2c (387a) 

If: T/2y > TL/X 

(. -- "tY)l-' (387b) 

From (387) we see that the first  bound is optimized when y is as large as necessary 
for  the te rm T/2 to be negligible. 
for T/2y = 3/4 rL/h which is outside the allowed range. 
we obtain 

In the second equation the denominator is maximized 
Thus for  y sufficiently large 

A 3E D V a r  (a-a) 2 
2cp2T3 P ML/s ' 

Thus if ML/s is close to unity, we can achieve quantum efficiency at high signal-toenoise 
ratios. 

7 . 5  CONTINUOUS TIME SYSTEMS 

7. 5. 1 Angle Modulation 

Before discussing angle modulation, I shall first restate the results previously 
Suppose that we have a slowly derived for estimation of the message of a P M  system. 

varying known spatial envelope multiplying the received signal. That is, 

i D t  
E(t, P )  = zRLy(p)(P/s) eipm(t) t n(t, p )  e 

(389 

The ratio P/s is fixed at A . Therefore P = A s. The Cramer-Rao bound is given 

I 2 s Y(P) Y ( P I  d P = s- 
2 2 

Pp2  H-'(t, z )  Km(x, t)  dt 
K (x, z )  = H-'(x, z)  t 

m hD/8c t No/2 
(390) 

From the results of Section IV, we know that for sufficient "power," the optimal 
receiver can take the form of a phase-locked loop with feedback signal given by 

'Y 

where C is large. 
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The arrangement is shown in Fig. 6.  Provided the loop spends most of its time in 
the linear region, the estimate is efficient. 

Suppose there is a phase term added to the message-induced phase because of ca r r i e r  
drift. Provided that the spectrum of this process is disjoint from the message spectrum 
and the drift is not so  rapid as to drive the loop out of i t s  linear region, we can estimate 
the message and drift terms, and separate the two in the post loop filter. 

A more difficult problem than phase drift is channel fading. From (308)-(3 14) we 
obtain the Cramer-Rao bound of the estimation performance for  a slowly varying chan- 
nel with diversity in space. It is 

(2p2TP2/K) 1 Km(x, t )  H-'(t, z) dt 
Km(x, z) = H-'(x, z) t , 

No(NotPT/K) f % iiQ (NotPT/ZK) 
(392) 

where K is the number of diversity paths, and P is average receiver "power." We can 
obtain another lower bound by assuming that we know the envelope y(p).  We solve (390) 

2 in terms of the random parameter P = A s and average the bound over the probability 
density of s. 
is identical to (390) with the replacement of fixed power by average power. 

We make the observation that for  No much l e s s  than the ratio TP/K, (392) 

Consider the special case when the signal-to-noise ratio on each diversity path is 
large enough so  that we can estimate the spatial envelope. 
then s is the sum of the squares of 2K Gaussian random variables. 
large, the probability of a deep fade is small. 
sum is (3/2K)'j2 times the mean of the sum. 

If we have K diversity paths, 
For K sufficiently 

That is, the standard deviation of the 

The performance of the phased-locked loop is obtained for s fixed by solving (390). 
We then average this performance over s to obtain the fading-channel performance. This 
performance is conditional on there being enough diversity paths and enough energy so  
that the loop stays in its linear region most of the time. 
on obtaining a perfect channel estimate without disturbing much of the received energy. 
Remember that channel estimation involves heterodyning, which is not compatible with 
message estimation in the quantum case. 
using a small fraction of the signal on each mode. 

Furthermore, it is conditioned 

Therefore we must estimate the channel by 

We know that the channel estimate will not be perfect. Let us  consider how sensitive 
this scheme is to  e r r o r s  in this estimate. 
sion in terms of the uncorrelated Karhunen-Lohe spatial functions for a slowly varying 
spatial envelope . 

We shall express the estimate as an expan- 

A 
Y ( t ,  P )  = = Vi@) 4Ji(P) 

A 

(393) 
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The output of the phase-locked loop, after normalization so that the perfect channel esti- 
mate would yield unity gain, is 

(3 94) 

Equation (394) assumes that the loop is operating in its linear region. We see  from 
this equation that the phase e r r o r s  add up randomly to  form a noise process that is 

assumed lowpass compared with the message. 
the loop filter o r  the unrealizable (realizable with delay) post loop filter. If these e r r o r s  
do not affect the linearization approximation, they will cause no problems. Because of 
amplitude e r ro r s ,  the signal coming out of the counter is multiplied by a gain different 
from unity. If we examine the linearized loop in Fig. 6,  w e  see that this affects the 
forward gain of the linearized filter transfer function. 
noise ratio is high, then the transfer function, under the assumption of a perfect esti- 
mate, must be near unity at message frequencies. Thus, a small change in the forward 
gain wi l l  not affect the over-all transfer function which is (forward gain/l t forward 

gain). If on the other hand, the transfer function is not close to unity at some frequen- 
cies, under the assumption of a perfect channel estimate, then the over-all gain wi l l  be 
accordingly modified. Thus, at frequencies for  which the signal-to-noise ratio is high, 
amplitude e r r o r s  do not affect the gain of the estimate to a great extent. There is 

another effect that is due to amplitude estimation e r rors .  
the loop plus post loop unrealizable filter wi l l  no longer be matched to  the message plus 
noise. Furthermore, since the combining i s ' no t  optimal for the different paths, the 
over-all signal-to-noise ratio will be reduced. It is these effects that degrade perfor- 
mance. 

Thus this signal will not pass. through 

If we assume that the signal-to- 

The over-all loop gain and 

If the channel estimation is not good enough fo r  the approximations leading to a linear 
loop to  hold, perhaps we should use a different demodulation scheme. 

7. 5. 2 F M  Discrimination with a Prism-Lens System 

We have seen that the estimation of the frequency of a burst of a sinusoid could be 
accomplished by passing the received signal through a prism or diffraction grating, and 

PRISM 

-- 
PHOTON 

COUNTER 

ENVELOPE = 
t 

( R e i  (df-&m(z)dz) 

e = t (W-SL) 

A m (t) 
FILTER PULSE 

GEN 

Fig. 10. Prism-lens discriminator for frequency modulation. 
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then through a lens, to convert to a spatial position modulation problem. 
investigate the prism-lens system as an F M  discriminator. 

I shall now 

The system is shown in Fig. 10. Note that the lens aperture has a Gaussian rather 
than abrupt changing transmittance. This is more than a mathematical convenience. It 
is imperative for  this system that the focal spot caused by a plane wave impinging upon 
the aperture have a finite second moment when squared. 
focal spot intensity that falls off as l /x  . 

The abrupt aperture has a 
This is not fast enough for  good estimation. 2 

The field impinging upon the prism or diffraction grating is given by 

( 3 9 5 )  E(t, p )  = 2 R L  exp(iDt+ idf J-, t m(z) dz), 

where no thermal noise has been assumed. The aperture transmittance is given by 

2 2  
T(x, y) = e-(X ty )/(LM/2n). 

The corresponding focal spot is 

( 3 9 6 )  

( 3 9 7 )  

2 where u2 = (Xr) /LM, L = M, and r is the focal length. 
The field at the focal plane is the prism output angular spectrum convolved with the 

focal spot. It is given by 

* f f E(x, y, T )  E (.x, y, T )  dxdy = PML ( 3 9 9 )  

as expected. 
With this field impinging upon the focal plane, the output of the photon counter wi l l  

be a Poisson process in time. That is, every so often, a photoelectron wi l l  be emitted. 
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The information that it contains about the message is in i t s  x coordinate relative to the 
lens axis. 
of the pulse wi l l  be proportional to the x position of the count. 
wi l l  be small  compared with the mean interarrival time of the counts. 
cess  thus generated wi l l  be used as the input to a linear filter which wi l l  generate the 
estimate. We must determine the optimal (Wiener) filter. 

Firs t ,  let us establish two facts about the statistics of the arrival position of a count, 

Suppose that we use each count to drive a pulse generator. The amplitude 
The width of the pulse 

The random pro- 

given the message. 
If a count occurs, the expected value of its x coordinate is 

The variance of i ts  x coordinate is 

Call the random process that we generate v(t). To specify the optimal filter, we 
need two correlations : 

Arrival positions at  different times a r e  independent. We assume that the pulses 
generated a re  infinitely narrow. Assuming that the message is stationary, we 
obtain 

2cPML rydf co Km(tl-t2-t3)( 1/2su2) 1/2 exp(-ti/2u2) dtg 
E[v(t1)m(t2)1 = 

lis2 

+ (rydf2cPML/liCZ)2 Km(tl-t2-t3)( 1/4ru 2 ) 1/2 exp(-ti/4u2) dt3. 
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The optimal fi l ter  is then 

Hop t (4  = Svm(~)/Svv(@) 

B!d/[2cPyrdfML] Sm(w) e uLwL/2 
- - (405) 

2 2  
Sm(a) t €iI/[ZcPML] eU [Km(0)t  1/(4diuz)] 

The e r ro r  variance is 

2 2  
Sm(w) [ wzBC2/(8cPMLd~)] [(l + 4Km(0) diu') (eu /(a2u2))] dw 

Sm(u) t w2B!2/(8cPMLd~) [(l t 4Km(0)df2uZ) (ea2u2/(azu2))] 

- s ZTT 

We have written (406) in the form that would occur if the message m(t) were imbedded 
at baseband in noise of spectral density 

2 2  
Sn(W) = s C. R. (4 [ (1 t 4Km(0) diu2) ( eU /(u2u2))] , (407) 

where Sc. 

message spectrum is narrow-band around some center frequency. 
(a) is the noise predicted by the Cram6r-Rao bound for FM.  Suppose the 

We could optimize 

3.35 
3 . 3  

3 
\ 2.7  cn 

ln 
e, 

h 

3 
v 

-7 
I 
I 
I 

- -  I*- 
E 

VI 

J 

0.5 1 2 

Fig. 11. Illustrations for the prism-lens discriminator. 

2 (407) by adjusting u . 
Fig. l l a ) .  

Consider the function eS/s. It has a minimum at s = 1 (see 
If we set  uv = 1, we obtain Suppose that Sm(w) is as shown in Fig. l lb .  

Sn(o) = 3 1 t 4Km(0) di/v2] Sc. (a). [ 
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If in addition 4Km(0)(df/v)' << 1, our performance is within 5 dB of the Cramer-Rao 

bound. If, on the other hand, u is very small, then we can replace eU /u2w2) by 
(l+l/uzo2) in (406). 

Thus we see that under certain conditions, it is possible for this system to operate 

( 2 2  
2 

close to efficiency in spite of its simplicity. 

7. 5. 3 Amplitude Modulation 

From our discussion in Section IV, we know that the optimal DSBSC demodulator for 
the known-phase case homodynes the received field to baseband and then processes opti- 
mally the resulting classical signal plus noise. 

If we have a random-phase angle, possibly because of an unstable carr ier ,  we can 
track the phase in a phase-locked loop, using part of the incoming energy (amplitude and 
phase measurements a r e  not compatible). If we do not have a perfect phase estimate, 
the output of the photon counter wi l l  include the same noise component, but a reduced 
signal component. The amplitude of the signal component wi l l  be proportional to the 
cosine of the phase e r ror .  This means that our performance is degraded. 

Classically, we can use a single-sideband o r  quadrature modulation to put two sig- 
Either of these schemes would require heterodyning as a first 

When quantum noise dominates, the noise added to each of the 
nals in the same band. 
step in demodulation. 
two estimates would be twice as large as the noise added to each if  we used disjoint f re-  
quency bands and homodyned. In the classical case there is no difference. Thus, if the 
bandwidth is available, it is to our advantage to avoid SSB or quadrature modulation in 
the quantum case, perhaps by frequency-multiplexing. 

If we have a fading channel, but can still estimate the spatial envelope, then the per- 
formance is given by the nonfading Cram&--Rao bound averaged over the fading. 
optimal receiver homodynes with an oscillator matched to the estimated fading envelope. 
This holds true whether the fading is Gaussian, log-normal o r  whatever. 

The 

If we do not have a perfect channel estimate there wi l l  be two effects. Estimate 
e r r o r s  in the phase of the spatial envelope wi l l  cause a reduction of the signal component 
of the output as previously discussed. 
wi l l  cause changes in the noise and signal components at the output. 
to nonoptimal combining and thus higher noise-to-signal ratio. Furthermore, the filter 
will  not be properly matched to this new signal-to-noise ratio. 

It is not likely that we can get a good channel estimate, because of severe fading. 

Estimation e r r o r s  in the amplitude of the envelope 
Both effects lead 

In that case, we should avoid this type of modulation. 

7. 5.4 Intensity Modulation 

There is a type of modulation that does not require channel estimation in cases in 
It is which there is a large number of diversity paths. 

certainly possible that the signal-to-noise ratio overall is high, while the signal-to- 
noise ratio per diversity path is small. 

This is intensity modulation. 

In such a case, a channel estimate may not be 
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possible. We shall now investigate this scheme. Using Eq. 286, we modulate the inten- 
si ty of the field around an operating point as follows: 

E(t, p )  = ZRL(rn(t)tB)l/' C(p) A eiRt t n(t, p )  e i D t  

* 
R C (P, P ' )  = E C(P) C"(P') = bkYk(p) Y i ( P ' )  

t E (0, TI, p E (aperture) 

Prob (m(t)<<B) = 1 (409) 

(410) 2 Km(t,u) = H-l(t,u) t (2c/Ea) .f Km(t, v) J (v ,x)  H-'(x,u) dxdu 

2 - 4  
EmbkA c 1/2bkA2Em) (ES2/2c) + No(NotA2bkEm)] 

6(t, u)(Es2/2c)2 

B + m(t) 
J ( t ,  u) = E 

where 

Em = JT (Btm(t))  dt 

2 if we neglect thermal noise J(t ,  u) UN A 6(t ,  u)(Ei2/2cB) ,X bk. 

the incoming field. 
amplitudes rk. 

Now consider the output of a photon counter in the focal plane of a lens that focuses 
The process is Poisson i f  we condition it upon knowledge of the mode 

The mean of the process is 

p(t) = (2c/En)A2 C rkr i (Btm(t ) ) .  (412a) 1 rk 

Its covariance is 

We consider each photoelectron as an impulse. 
If we call the photon counter output v(t), we have 

Expect (v(t,)v(t,)) = (Km(tl-t2) t B2)[A2(2c/ES2)]2 [ C bkf 2 (Cbk)'] 

Expect (v(tl)m(t2)) = A 2 (2c/fiR) Km(t1-t2) C bk. 

(412b) 

We can use these results to determine the optimal (Wiener) linear filter. That is, we 
form the process v(t) by letting the counts drive a narrow pulse generator. The per- 
formance will be that which is associated with an additive noise channel at baseband 

93 



2 2 with spectral  height (IiG!/Zc)(B/A C bk) + Sm(w) Z bk/(Z bk)'. Examining (41 1) and (410) 

we see that the first te rm above is the noise of the Cramer-Rao bound. If we assume 
that we have fixed total energy and a large number of diversity paths, the second te rm 
above wi l l  be negligible (that is, bk = P/K for k = 1, . . . , K; K sufficiently large). 
our estimate is efficient. 

Thus 

7 . 6  SYSTEM COMPARISON 

We can compare the sampled data systems discussed previously with each other and 
with a simple PCM system. We shall call upon a fact of rate distortion theory. l8 If we 

wish to transmit a Gaussian random variable with a priori  variance T over a channel 
such that the average e r r o r  variance of the estimate is U, then the minimum channel 
capacity required to perform this task is 

'min = 1/2 In ( l tT/U) bits. (414) 

Suppose that we use one of our schemes to transmit N independent Gaussian random 
variables each of a priori  variance T over our quantum channel so that the e r r o r  vari- 
ance of each estimate is U. 
mum channel capacity necessary to perform this task for any system 

We shall assign a utility to the scheme equal to the mini- 

F = (utility) = (N/2) In (l tT/U).  (415) 

We require Let us  compare four systems that could be used over a nonfading channel. 
that each scheme use a fixed or average energy E and operate in an interval of 1 second. 
We shall write the utility of each system in te rms  of the bandwidth B in Hz that each 
uses and the energy E. The aperture field is 

E(t, p )  = ZRl(E/s)'/' f(t, m(t))  e int  (416) 

t E ( 0 9 1 )  p E (aperture) 

aperture a rea  = s 

Average energy in f(t, m(t))  = 1. 

Svs t em s 

1. We use PAM to communicate N pulses over the channel. Each pulse is modulated 
2 
J 

in amplitude by a GRV of variance T. 
A. is the parameter of pulse j. 

1/N s long. 
dom variable takes on values between plus and minus two standard deviations, the pulse 
moves from the bottom to the top of its interval. We assume that we use a Gaussian- 
shaped pulse whose bandwidth is 2P/r  Hz a s  discussed in (344). We assume that P is 

sufficiently large so that with the modulation constraint, the probability of a pulse 

The energy of each pulse is (E/NT)A., where 
Thus the average total energy is E. 

J 
2.  We use P P M  to communicate N GRV's. Each pulse is modulated in an interval 

Each pulse has energy E/N. The modulation is adjusted so that a s  the ran- 
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extending beyond its interval is small. We assume that the energy per pulse is large 
enough so that our system achieves the Cramer-Rao performance. 

3. We use P F M  with a sequence of pulses of length 1/N. We define the bandwidth 
as ~ T T  t imes the modulation index times the standard deviation of the parameter T 1 / 2  , 

under the assumption that N is not so la.rge that the bandwidth is governed by the pulse 
duration. 

4. We use PCM to transmit M orthogonal waveforms N times. The information 
transmitted, under the assumption of correct decisions, is N In M. We shall detect the 
pulses by counting photons in each orthogonal mode. 
transmission is the probability of receiving no counts in the excited mode -e 
The bandwidth is MN. 

The probability of e r r o r  on each 
-ZCE/BR N 

Applying the results derived previously, we obtain the comparisons listed in Table 2. 

Table 2. System comparison. 

System Utility (F) 

PAM B/2 In (l t8cE/finB) 
where B = N 

P P M  N/2 In (1+1~~cB~E/8f iS2N~)  

P F M  N/2 In ( 1tlr2cB2E/6fiS2N3) 

PCM 

PAM B/2 In (cE/8fiS2Bt1) 
(intensity) 

We see that the utility increases as In B for  the PPM, PFM, and PCM systems, 
The utility function of the PAM system looks like provided we have sufficient energy. 

the Shannon capacity with No replaced by ES2/8c, and with a factor 1/2 in front. 
derivation of the capacity of a known-phase quantum channel becomes available (some 
work has been done along these lines), we can normalize F to obtain an efficiency-of- 
operation rating. 

If a 

If we transmit PPM, P F M  o r  PCM over a fading channel with adequate diversity, 
the utility ratings remain the same. 
width B on L paths. 

We must realize, however, that we a re  using band- 

If we transmit PAM intensity modulation over a fading channel with diversity, and 
i f  we operate around a bias such that the intensity transmitted when the message param- 
eter  is zero is twice the intensity transmitted when the message is minus two standard 
deviations, then we obtain the result indicated in Table 2. 

s i ty and E-field PAM is a factor of 64  in average energy (with the bias given above). 

The difference between inten- 
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7 . 7  EXTENSIONS TO NON-GAUSSIAN FADING 

The assumption that the fading channel can be modeled as  a Gaussian random process 
multiplying the signal envelope is a mathematical convenience. We know that the fading 
of light signals attributable to turbulence is more often described as a multiplication by 
a log-normal process. 
is Gaussian. 
channels ? 

That is, multiplication by a process whose complex logarithm 
Does this destroy the applicability of the results obtained herein for fading 

The Cramer-Rao bounds derived for Gaussian fading a re  certainly not directly appli- 
cable. For many of the examples discussed, however, we used these bounds only in 
passing. Often we looked at the known-channel bound, which is a function of the 
"energy" o r  "power" that we receive. 
and then estimate the message optimally based on those results. 
be the performance of the known channel as  a function of the received "energy" averaged 
over the fading process. 
a lower bound to what any other technique could do. 
was not necessary at all, for example, P P M ,  provided we had enough diversity. 

We assume that we could measure the channel, 
Our performance would 

Even if we could not measure the channel, the result above is 
Sometimes, measuring the channel 

In light of these statements, let us  recall  the relationship between a received 
"energy" and the fading process on a channel that is spatially fading and slowly varying 
in time. 
the energy we would receive if the spatial envelope were unity. 
proportional to the sum of the squares of N uncorrelated random variables (which a r e  
complex Gaussian for  the Gaussian fading case), where N is the number of significant 
eigenvalues of the spatial envelope correlation function. 
that if these random variables have finite mean-square values, and if there a r e  enough 
that a r e  independent, then the sum wi l l  converge to i t s  average by the same arguments 
used in the Gaussian fading case. 
the performance w i l l  approach the known-channel bound with fixed energy replaced by 
average energy. 
estimate the channel, o r  a channel estimate is not required for demodulation (for 
example, intensity modulation). 

The received "energy" is the sum of the squares of the mode amplitudes times 
Thus the "energy" is 

We can make the statement 

Thus the probability of a deep fade wi l l  be small, and 

All of the discussion above is predicated on the fact that either we can 

In principle, of course, we can directly obtain the Cramer-Rao o r  Barankin bounds 
for any type of fading. Unfortunately, analytical problems make this difficult. 

For the special case of PAM intensity modulation, where the density operators com- 
mute for all parameter values, under the assumption of completely random phase, the 
optimal estimator can be determined directly by straightforward computation. 
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VIII. CONCLUSION 

It is apparent that the bounds obtained in this report do have considerable use in 
It is also apparent designing optimal receivers,  at least in the case of strong signals. 

that very often photon counting, perhaps with a local oscillator, wi l l  be employed in the 
receiver structure. 

The Barankin bound, although a tighter bound, is difficult to evaluate for the quantum 
case. Although it would be a useful tool, its form is not a s  simple as the classical 
equivalent.19 1 have been able to evaluate it for the single-mode case. Extension to the 
multimode case poses no great obstacles, but seems to lead to cumbersome expres- 
sions. 

A problem that needs more investigation is multiparameter estimation, when indi- 
vidual optimal estimators do not commute.” The restraint of commutation is not difficult 
to apply for a mean-square-error cost functional. The difficulty is in the determination 
of the space upon which the optimal commuting operators should measure. What is 
needed is more study into so-called noisy measurements of noncommuting operators, 
and measurement of non-Hermitian operators characterized by a complete set  of eigen- 
kets. 

There is a classical tool that has no present meaning for the quantum problem. This 
is the maximum-likelihood estimator. 
maximum-likelihood operator. 
quantitative results. 

It would be of great value to interpret some 
This will probably evolve with more experience and 

Extension of the fading channel results to log-normal fading will  probably be pos- 
sible, once classical tools for handling log-normal processes become available, and 
more insight into such processes in optical channels makes reasonable engineering 
approximations possible, 
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APPENDIX A 

Homodyning and Heterodyning with a Local 
Oscillator and a Photon Counter 

9 R. J. Glauber has shown that the moment-generating function of the sum of the 
counts of a photon counter subject to an incident plane-wave field that is narrow-field 
and arrives in the interval (0, t) is given by 

Mc(s, t) = E[exp -s(counts in  (0 ,  t ))]  

where the field density operator is 

and the complex field is 

where Q is the center frequency. Suppose the incident plane wave, which is time- 
limited to  the interval (0,  T) ,  where L = cT, consists in the sum of two fields. The sig- 
nal field has density operator 

where 

The added local-oscillator field is 

where 

-i%u -i(S2 -v)u i2- l k e  = A e  

(A. 3 )  

Here, v is a classical frequency, either zero, o r  large compared with the bandwidth 
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of S(m(u), u). 
The total field is given by 

-iwku i v y  -iQu 
c (u )  = iC  rke = (S(m(u), u ) tAe  e 

Plugging (A.4) into (A. 11, we get 

E k x p  (-s 1 counts in (O,t)/qA )I 

where 

k' pk = ak - r 

Suppose now that we let A get very large. Equation A. 5 becomes (A. 6) .  

2 Mc = exp[-s s," ZRL(S(m(u), u) e -ivu ) du exp(s t/Zq) 1 
t - i (X-G tv)u 

* s exp(-sAt) exp[-sZRL 
i 1 Pk Io e 

(A. 4)  

We can perform the integration over P to  obtain k 
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1 -ivu Mc(s, t )  = exp [s s," ZRL(S(m(u), u) e ) du exp(-sAt) 

where 

- i ( w  -Q tv)(u-w) k Rn(u, w) = C ( z )  e 
k 

The index k runs over the modes when we allow our photon counter to  count. We 
shall now investigate that index. 

A.1 HOMODYNE CASE 

Suppose we a r e  performing a homodyne measurement. This is ,  the frequency v is 
zero. 
frequencies, the index k must extend over frequencies on both sides of Q .  

is an impulse with respect to  narrow-band signals about Q. 

Since the message field envelope S(m(u), u) contains both positive and negative 
Thus Rn 

A.2 HETERODYNE CASE 

If we are performing a heterodyne measurement, the frequency v is higher than 
the largest frequency in S(m(u, u)). 
t h a t % - "  t v 2 0 .  
within the sensitive region of the counter. 
noise contributions, from entering the photon counter. We get 

The index k must extend over all frequencies such 
This insures that the entire message plus local-oscillator field is 

We shield other frequencies, to prevent their 

* 
Rn(t, u) t Rn(t,u) = T (  z )  6(t,u). (A. 10) 

Plugging (A.9) and (A. 10)  into (A.71, we see  that we have two cases. If we think of the out- 
put of the counter as a continuous g(t) signal (the counting rate before normalization was  
high because of the local oscillator. Any smoothing by the apparatus will make g(t)  look 
continuous) and if we subtract off the bias A, then this waveform which is the counts 
per second, for an ideal photon counter with = 2c/EC2, is 
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the homodyne case. W e  have divided the output by two. And 

g(t) = ZRL(S(m(t), t )  ei&) t n(t) 

the heterodyne case, where we assume ( 2 )  = (n) .  

tributes negligible noise. 
That is ,  the local oscillator con- 
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APPENDIX B 

Field Operators 

Quantum field theory tells us to treat  each mode of the electromagnetic field in a 
We shall discuss some of 

For a more complete treatment, several authors may be con- 
bounded region of space as a quantum harmonic oscillator. 
the salient features here. 
sulted. 2' 4 9  

which represents our quantum harmonic oscillator. 
tors  may have continuous spectra, our space is larger than a Hilbert space; and is 

sometimes called a "ket" space. One way to define- the space is to specify a set of 
orthogonal vectors that span the space, and the effects of the space operators on this 
set  of vectors; that is ,  specify a coordinate system. Let N be a Hermitian operator 
on our space. Our reference vectors wi l l  be the eigenstates of N that we denote n). 

We must first define the Hilbert space in which our operators operate and 
Strictly speaking, since our opera- 

N n )  = n n). (B. 1) 

Thus far we are  fairly general. 
assume that the n )  form a complete set, 
and its adjoint b . We require 

We make no restriction on the real numbers n. We 
Now consider two non-Hermitian operators b 

t 

[b, bt] = 1. (B. 2) 

Require next that 

b 0 )  = 0 ,  (B. 3)  

where 0 )  is one of the number states n )  that a re  eigenstates of N.  

require the rest  of the eigenstates to be generated as  follows: 
Furthermore, 

From (B. 2) and (B. 4) we have 

b t n )  = (ntl)1'2 ( n t l ) )  

b n )  = (n)'/' (n-l)) ,  

t k  tk-  1 since [b,b ] = kb , and 

t 

t 

b b n)  = n n). (B. 5) 

Thus b b which is clearly Hermitian is the number operator N. 
guarantees that the n )  defined in (B.4)  are  in fact orthogonal. 

Furthermore, this 

The operators b and bt a r e  called the annihilation and creation operators, 
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t 
respectively. The eigenstates n )  of b b 

a re  called the number states, since they correspond to the integer number of photons 
t associated with an oscillator if it is in one of these states. Measuring the operator b b 

will  result in an integer outcome. (That the eigenvalues a re  integers is guaranteed by 

(B. 7).) In general the state of the oscillator wi l l  be a linear combination of the number 
states. Furthermore, the state may only be known statistically. 
monic oscillator in thermal equilibrium at temperature T, the density operator is 

They are  also called the boson operators. 

For  the case of a har- 

where 

btb j )  = j j) 

( n )  = TR pb 4- b = (e An/kT- 1)-1 

= oscillator frequency in rad/s. 

When the field mode ar i ses  from the radiation of a classical (strong, negligibly reacting 

of the non-Hermitian operator b. 
onal. 

with the radiation process) source, it has been shown by Glauber 9 to be in an eigenstate 

The eigenstates of b a re  complete, but not orthog- 
They are  linear combinations of the number states given by 

where 

b P )  = P P )  

P is a complex number 

The density operator of a nonstatistical classical current source field, for  the mode that 
we are  considering, is 

P = 4 (.It (B. 8) 

where the value of a is determined by the correspondence discussed in Section 111. 
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This report is concerned with the incorporation of the axioms of quantum mea- 
surements into current communication estimation theory. It is well known that clas- 
sical electromagnetic theory does not adequately describe fields at optical frequencies, 
The advent of the laser  has made the use of optical car r ie rs  for information transmis 
sion practical. Classical communication estimation theory emphasizes background 
noise and channel fading as  primary limitations on system performance. At optical 
frequencies, quantum effects may totally dominate performance. Estimation theory i z  
formulated using the quantum theory so that this type of system limitation can be 
understood, and optimal receivers and systems designed. 

The equations determining the optimal minimum mean-square-error estimator of 
a parameter imbedded in a quantum system are  derived. Bounds analogous to the 
Cram6r-Rao and Barankin bounds of classical estimation theory a re  also derived, ani 
then specialized to the case of an electromagnetic field in a bounded region of space 
Cram&--Rao-type bounds for estimation of parameters and waveforms imbedded in 
known and fading channels a re  derived. 

In examples optimal receivers for the commonly used classical modulation 
schemes, such as  PPM, PAM, PM,  DSBSC, a re  derived. The differences between 
classical and quantum systems in implementation and performance a re  emphasized. 

It is apparent from the examples and from the structure of the bounds, that quan- 
tum effects often appear as  an additive white noise arising in heterodyne and homo- 
dyne structure receivers. These receivers a re  not always optimal in performance 
or in implementation simplicity. 
counting a re  sometimes optimal or near optimal. 

Other receivers employing detection by photon 
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